مدل‌سازی تابع توزیع توام چهار بعدی ویژگی‌های مهم سیل با استفاده از ساختار سی-واین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

2 استاد گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

3 دانشیار گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

4 استادیار گزوه مهندسی آب، دانشگاه شهر کرد، شهرکرد، ایران

چکیده

تشخیص یک مفصل چند بعدی مناسب به منظور تعیین ساختار وابستگی داده­های چند بعدی امر پیچیده ای می باشد چرا که مفصل­های چند بعدی نظیر مفصل­های بیضوی و ارشمیدسی فاقد انعطاف­پذیری لازم جهت مدل­سازی ساختار وابستگی بوده و دارای محدودیت های از قبیل محدودیت­های پارامتر می­باشد. برای غلبه بر این محدودیت­ها، مفصل­های واین جهت مدل­سازی و شبیه سازی داده­های هیدرولوژیکی چند بعدی ارائه شده اند. ساختمان سی-واین شامل آبشاری از جفت-مفصل­ها می­باشد که بواسطه آن­ها دارای چندین پارامتر بوده و بدین وسیله تشخیص و درک کامل الگوهای وابستگی پنهان و مختلط بین متغیرهای هیدرولوژیکی را فراهم می­آورد. در این مقاله مفصل­های سی-واین به منظور توصیف ساختار وابستگی بین ویژگی های سیل (حجم سیل(V)، دبی اوج سیل  (P)، زمان پایه  (B)و زمان اوج سیل(TP)) پیشنهاد گردید و از مناسب­ترین ساختارهای سی- واین جهت مدل­سازی توزیع توام چهار متغیره بهره گرفته شد. در این روش ابتدا با استفاده از جایگشت­ متغیرها ساختارهای سی-واین مختلف حاصل گردید و سپس مناسب­ترین جفت- مفصل­ها از خانواده­های مفصل بیضوی و ارشمیدسی مطابق با معیارهای اطلاعات بیزین(BIC)  و آکائیکه (AIC) انتخاب گردید. در نهایت مفصل­های سی-واین چهاربعدی حاصل با مفصل­های تجربی چهار بعدی مقایسه گردیدند و با توجه به معیارهای ضریب تبیین، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطاها و روش گرافیکی، ساختار (B-P-V-TP) دقیق­ترین تابع توزیع توام چهار بعدی تشخیص داده شد. بنابراین در نهایت نتیجه­گیری شد که انتخاب متغیر زمان پایه  Bبعنوان متغیر مرکزی انتخاب مناسبی بوده و این متغیر نقش کنترل­کننده متغیرهای حجم کل، زمان اوج و دبی اوج سیل را دارا می­باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Four-Dimensional Joint Distribution Function of Flood Characteristics Using C-Vine Structure

نویسندگان [English]

  • Maryam Shafaei 1
  • Ahmad Fakheri-Fard 2
  • Yaghoub Dinpashoh 3
  • Rasoul Mirabbasi Najafabadi 4
1 Ph. D Candidate in Water Resources Engineering, Department of Water Engineering, Tabriz University., Tabriz., Iran.
2 Professor, Department of Water Engineering, Tabriz University., Tabriz., Iran.
3 Associate Professor, Department of Water Engineering, Tabriz University., Tabriz., Iran
4 Assistant Professor. Department of Water Engineering, Shahrekord University., Shahrekord., Iran
چکیده [English]

The recognition of a proper multi-dimensional copula for determination the dependence structure in multi- dimensional data is not easy. Because multi- dimensional copulas such as the multi-dimensional Elliptical and Archimedean copulas lack flexibility to capture dependence structure and include other limitations, such as parameter restrictions. To dominate these limitations, vine copulas have been presented and employed for simulation of hydrology variables. To realize and fully perceive the mixed and hidden dependence patterns between flood characteristics (flood volume (V), peak flow (P), base time (B) and peak time (TP)), a mixture of C-vine copulas is proposed describing the dependence structure between the main flood characteristics and then simulates them use the most proper C-vine structures. As a C-vine structure consists several parameters capturing the dependence structure through cascade of pair-copulas, the proposed structure can explain completely complex and hidden dependence patterns in multi- dimensional data. In the present study, to achieve the most suitable C-vine structures, first different structures were created through the permuting of flood characteristics in the C-vine structure and then the most appropriate copula family among Elliptical or Archimedean copula families was selected for each pair-copula according to Log Maximum Likelihood (LML), AIC and BIC evaluation criteria. Finally, the obtained four-dimensional joint distribution functions were compared with empirical copula and according to RMSE, MAE and R2 criteria and graphical method, structure (B-P-V-TP) was known as the most accurate structure. Thus, it was found that the selection of flood base time as central variable is a appropriate selection and plays role of controlling variable for volume, peak discharge and peak time of flood variables.  

کلیدواژه‌ها [English]

  • Akaike information criteria
  • Archimedean copula
  • Elliptic copula
  • Flood volume
  • pair-copula
محمدپور،ع و خدادادی،ا . ۱۳۹۱. تحلیل فراوانی سیل سه متغیره با استفاده از تابع مفصل خانواده برآورد Plackett، برآورد پارامترها با استفاده از الگوریتم ژنتیک GA. نهمین کنگره بین المللی مهندسی عمران، دانشگاه صنعتی اصفهان. اردیبهشت ماه 19-۲1.

عباسیان،م.، موسوی ندوشنی،س،س. ۱۳۹۳. تحلیل فراوانی چند متغیره سیلاب با استفاده از تابع مفصل و توزیع­های حاشیه­ای پارامتری و ناپارامتری ،مجله علمی-پژوهشی عمران مدرس. ۴.۱۴ : 92-81

Aas,K., Czado,C., Frigessi.,A and Bakken,H. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics. 44: 182–198.

Bedford,T and Cooke,R. 2001. Probability density decomposition for conditionally dependent random variables modeled by vines, Annals of Mathematics and Artificial Intelligence. 32.1: 245–268.

Bedford,T., Cooke, R. 2002. Vines – A new graphical model for dependent random variables, Annals of Statistics. 30.4: 1031–1068.

Brechmann, E.C., Czado, C and Aas, K.  2012. Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics. 40.1: 68-85.

De Michele, C., Salvadori, G. 2003. A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research. 108: 15-27

De Michele, C., Salvadori, G., Passoni, G and Vezzoli, R. 2007. A multivariate model of sea storms using copulas, Coastal Engineering. 54.10: 734–751.

Genest, C., Favre, A., Beliveau, J., and Jacques, C. (2007), Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data, Water Resour. Res.43, W09401, doi:10.1029/2006WR00527.

Genest, C., Rivest, L.-P., (1993), Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association. 88, 1034–1043.

Gräler, B., van den Berg, M.J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B and Verhoest,N.E.C. 2013. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation, Hydrology and Earth System Sciences. 17.4: 1281-1296

Grimaldi, S, Serinaldi, F. 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources. 29.8,1115–1167.

Gyasi-Agyei, Y., Melching, C. 2012. Modelling the dependence and internal structure of storm evens for continuous rainfall simulation, Journal of Hydrology. 464-465: 249–261.

Joe, H. 1996. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer, M and Taylor, D (Eds.). Distributions with fixed marginal sand related topics ,pp. 120-141. Hayward: In statute of Mathematical Statistics.

Kao, S., Govindaraju, R. 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas, Water Resources Researches. 44. 2, 1-19.

Kao, S.C., Govindaraju, R.S. 2010. A copula-based joint deficit index for droughts. Journal of Hydrology. 380.1–2, 121–134.

Karmakar, S and Simonovic, S.P. 2009. Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. Journal of Flood Risk Management. 2.1:32–44.

Kurowicka, D., Cooke, R. 2007. Sampling algorithms for generating joint uniform distributions using the vine-copula method. Computational Statistics & Data Analysis. 51: 2889–2906.

Mirabbasi, R., Fakheri-Fard, A and Dinpashoh, Y. 2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology. 108: 191–206.

Salvadori, G., De Michele, C. 2004. Analytical calculation of storm volume statistics involving Pareto-like intensity duration marginals, Geophys. Geophysical Research Letters. 31.4:1-4

Salvadori, G., De Michele, C. 2006. Statistical characterization of temporal structure of storms, Advances in Water Resources. 29: 827–842.

Serinaldi, F and Grimaldi, S. 2007. Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering (ASCE). 12: 420–430.

Singh, V.P., Zhang, L. 2007. IDF curves using the Frank Archimedean copula. Journal of Hydrologic Engineering (ASCE) 12: 651–662.

Sklar, A. 1959. Fonction de re’partition a’ n dimensions et leurs marges, vol. 8. Publications de L’Institute de Statistique, Universite’ de Paris: Paris; 229–231.

Sloto, R.A., Crouse, M.Y. 1996. HYSEP: A computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey, Water-Resources Investigations, Report 96-4040, Pennsylvania, 46 p.

Song, S., Singh, V. 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data, Stochastic Environmental Research and Risk Assessment. 24: 425–444.

Sraj, M, Bezak, N. Brilly, M. 2015. Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrological Processes 29: 225–238.

Vernieuwe, H., Vandenberghe, S., De Baets, B., Verhoest, N.E.C.2015. A continuous rainfall model based on vine copulas. Hydrology and Earth System Sciences 19.6:2685–2699

Zhang, L., Singh,V.P. 2006.  Bivariate flood frequency analysis using copula method. Journal of Hydrologic Engineering (ASCE 11.2: 150–164.

Zhang, L,. Singh V.P. 2007a. Trivariate flood frequency analysis using the Gumbel–Hougaard copula, Journal of Hydrologic Engineering (ASCE, ASCE 12.4: 431–439.

Zhang, L, Singh, V.P 2007b. Gumbel-Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering (ASCE. 12.4:409–419.