AquaCrop Model Calibration and Evaluation in Irrigation Management for Main Grains

Document Type : Original Article

Authors

1 Assistant Professor, Department. of Water Engineering, Imam Khomeini International University., Ghazvin., Iran

2 Professor, Department. of Irrigation and Reclamation, University of Tehran., Tehran., Iran

3 Associate Professor, Department. of Irrigation and Reclamation, University of Tehran., Tehran., Iran

4 Assistant professor of Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO)., Karaj., Iran

Abstract

Due to water resources shortage, especially in arid and semiarid region, deficit irrigation is one of main managements for achieving maximum production. In recent years, many crop models are developed for simulation of crop growth and yield in various fields and irrigation managements. These models can simulate crop growth and crop yield. AquaCrop model is a pervasive model and is developed by FAO that can be used in growth simulating and modeling of many crops. In this study, Capability of the AquaCrop 3.1 and 5 in deficit irrigation management of important grains (wheat, barley and corn) in Shoor river basin has been investigated. At the first the model should be calibrated. Calibration of crop parameters such as rootzone depth, maximum canopy and periods of each growing cycle are main crop parameters that must be calibrated. Then, the calibrated model has been validated. RMSE and EF indexes were obtained 286.6 Kg/ha and 0.91 Kg/ha for wheat, 233.9 Kg/ha and 0.94 for barely, 444.4 Kg/ha and 0.98 (for the 2000 year data) and 796.3 Kg/ha and 0.95 for corn (for the 2001 year data), respectively by Aquacrop 3.1. RMSE indexes were 265.0, 198.1, 430.8 and 780.4 and EF indexes were 0.94, 0.96, 0.99 and 0.98 for wheat, barely, corn for the 2000 and 2001 year data, respectively by AquaCrop 5. These results show AquaCrop 5 have more accuracy due to salinity consideration. So AquaCrop 5 is suggested when there is salinity in soil and water resources or crop is sensetive to salinty.

Keywords


ابراهیمی، م.، وردی­نژاد، و.، مجنونی هریس، ا. (1394). شبیه سازی رشد ذرت تحت مدیریت های مختلف آب و نیتروژن با مدل AquaCrop. مجله تحقیقات آب و خاک ایران. 46(2): 207-220.
حسن­لی، م.، افراسیاب، پ.، ابراهیمیان، ح. (1394). ارزیابی مدل­های AquaCrop و SALTMED در تخمین عملکرد محصول ذرت و شوری خاک. مجله تحقیقات آب و خاک ایران. 46(3): 487-498.
خلیلی، ن.، داوری، ک.، علیزاده، ا.، کافی، م.، و انصاری، ح. (1393). شبیه سازی عملکرد گندم دیم با استفاده از مدل گیاهی آکواکراپ، مطالعه موردی ایستگاه تحقیقات کشاورزی دیم سیساب، خراسان شمالی. . مجله آب وخاک (علوم و صنایع کشاورزی). 28(5): 930-939.
رحیمی خوب، ح.، ستوده­نیا، ع.، و مساح بوانی، ع.ر. (1393). واسنجی و ارزیابی مدل AquaCrop برای ذرت علوفه ای منطقه قزوین. مجله آبیاری و زهکشی ایران. 8(1): 108-115.
رمضانی اعتدالی ه.، نظری ب.، توکلی، ع. ر. و پارسی­نژاد، م. (1388). ارزیابی مدل Cropwat در مدیریت کم آبیاری گندم و جو در منطقه کرج. مجله آب وخاک (علوم و صنایع کشاورزی). 23(1): 119-129.
ضیایی، غ.، بابازاده، ح.، عباسی، ف.، و کاوه، ف. (1393). بررسی عملکرد مدل­های CERES-Maize و AquaCrop در برآورد اجزای بیلان آب خاک و عملکرد ذرت. مجله تحقیقات آب و خاک ایران. 45(4): 435-445.
علیزاده ح.، نظری ب.، پارسی­نژاد م.، رمضانی اعتدالی ه. و جانباز ح. ر. (1389). ارزیابی مدل AquaCrop در مدیریت کم آبیاری گندم و جو در منطقه کرج. مجله آبیاری و زهکشی ایران. 2(4): 273-283.
فرهادی بانسوله ب. (1377). بررسی اثرات کم آبیاری بر روی عملکرد محصول جو در منطقه کرج و تعیین تابع تولید. پایان نامه کارشناسی ارشد. گروه آبیاری و آبادانی پردیس کشاورزی دانشگاه تهران. ص 120.
گلکار ح. ر. (1377). تعیین تابع تولید محصول گندم و مطالعه اثر تنش آبی بر عملکرد در منطقه کرج. پایان نامه کارشناسی ارشد. گروه آبیاری و آبادانی پردیس کشاورزی دانشگاه تهران. ص 122.
محمدی، م.، قهرمان، ب.، داوری، ک.، انصاری، ح.، و شهیدی، ع. (1394). اعتبار سنجی مدل AquaCrop به منظور شبیهسازی عملکرد و کارایی مصرف آب گندم زمستانه تحت شرایط همزمان تنش شوری و خشکی. مجله آب وخاک (علوم و صنایع کشاورزی). 29(1): 67-84.
میرلطیفی س. م. و ستوده­نیا ع. (1381). شبیه­سازی تاثیر کم آبیاری بر عملکرد محصول ذرت. گزارش نهایی طرح تحقیقات کاربردی معاونت پژوهشی سازمان مدیریت منابع آب ایران وزارت نیرو. ص 221.
Abedinpour, M., Sarangi, A., Rajput, T.B.S., Singh, M.H., Pathak, H., and Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110, 55-66.
Andarziana B., Bannayanb M., Steduto P., Mazraeha H., Barati M.E., Barati M.A., and Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. 100: 1-8.
Araya, A., Habtu, S., Hadgu, K.M., Kebede, A., and Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management. 97: 1838-1846.
Bradford, K.J., and Hsiao, T.C. (1982). Physiological responses to moderate water stress. p. 263–324. In O.L. Lange et al. (ed.) Physiological plant ecology. II. Water relations and carbon assimilation. Encyclopedia of Plant Physiology, New Series. Vol. 12B. Sprimger-Verlag, New York.
Brouwer, R., and De Wit, C.T. (1969). A simulation model of plant growth with special attention to root growth and its consequences. p. 224–244.
Doorenbos, J., and Kassam, A.H. (1979). Yield response to water. Irrigation And Drainage Paper no. 33. FAO, Rome.
Farahani, H.J., Izzi, G. Steduto, P., and Oweis, T.Y.  (2009). Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy Journal.  101:469–476.
García-Vila M, Fereres, E., Mateos, L., and Steduto, P. (2009). Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal. 101:477– 487.
Heng, L.K., Evett, S.R. Howell, T.A., and Hsiao, T.C. (2009). Calibration and testing of FAO AquaCrop model for maize in several locations. Agronomy Journal. 101: 488–498.
Hoffman G.J., Howell, T.A., and Solomon, K.H. (1992). Management of Farm Irrigation.
Homaee, M., Dirksen C., and Feddes, R.A. (2002). Simulation of Root Water Uptake. I. Nonuniform Transient Salinity Stress Using Different Macroscopic Reduction Functions. Journal of Agriculture Water Management. 57(2): 89-109.
Hsiao, T.C., Fereres, F., Acevedo, E., and Henderson, D.W. (1976). Water stress and dynamics of growth and yield of crop plants. p. 281–305. In O. L. Lange, L. Kappen, and E. D. Schulze (ed.) Ecological Studies. Analysis and Synthesis. Water and Plant Life. Vol. 19. Springer-Verlag, Berlin.
Hsiao, T.C., Heng, L.K., Steduto, P., Raes, D., and Fereres, F.  (2009). AquaCrop— Model parameterization and testing for maize. Agronomy Journal. 101:448–459.
Jones, J.W. and Kiniry, J.R. (1986). CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station.
Keating, B.A., P.S. Carberry,  G.L. Hammer, M.E. Probert, M.J. Robertson, D. Holzworth, N.I. Huth, J.N.G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J.P. Dimes, M. Silburn, E. Wang, S. Brown, K.L. Bristow, S. Asseng, S. Chapman, R.L. McCown, D.M. Freebairn and C.J. Smith. (2003). An overview of APSIM; a model designed for farming systems simulation. Europen Journal Agronomy. 18:267–288.
Kiniry, J.R., Williams, J.R., Gassman, P.W., and Debaeke, P. (1992). A general, process-oriented model for two competing plant species. Trans. ASAE. 35:801–810.
Kumar, P., Sarangi, A., Singh, D. K., and Parihar, S. S. (2014). Evaluation of AquaCrop model in predicting wheat yield and water productivity under irrigated saline regimes. Irrigation and Drainage. 63, 474–487.
Mkhabela M.S., and Bullock, P.R. (2012). Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management. 110:16– 24.
Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E. (2009). AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and soft ware description. Agronomy Journal. 101:438–447.
Salemi H., Mohd Soom, M.A., Lee, T.S., and Mousavi, S.F., Ganji, A., and KamilYusoff, M. (2011). Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research. 610: 2204-2215.
Smith, M. (1992). CROPWAT-a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No. 46. FAO, Rome.
Steduto P, Hsiao, T.C., Raes, D., and Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron0my Journal. 101: 426–437.
Stockle, C.O., Donatelli, M., and Nelson, R. (2003). CropSyst, a cropping systems simulation model. Europen Journal Agronomy. 18: 289–307.
Van Ittersum, M.K., Leff elaar, P.A., Van Keulen, H., Kropff, M.J., Bastiaans, L., and Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. Europen Journal Agronomy. 18: 201–234.
Vaux, H.J., and Pruitt, W.O.  (1983). Crop-water production functions. Adv. Irrig. 2:61–97.
Williams, J.R., Jones, C.A., and Dyke, P.T. (1989). EPIC—Erosion/productivity impact calculator. 1. The EPIC model. USDA-ARS, Temple, TX.