Prediction of Annual Evaporation Change in Dry Regions Using the Budyko-type framework (Case Study of Neishaboor-RokhWatershed)

Document Type : Original Article

Authors

1 PhD student, Water Engineering Department College of Agriculture, Ferdowsi University of Mashhad., Mashhad., Iran

2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad., Mashhad., Iran

3 Associate professor, Water Engineering Department College of Agriculture, Ferdowsi University of Mashhad., Mashhad., Iran

4 Professor, Water Engineering Department College of Agriculture, Ferdowsi University of Mashhad., Mashhad., Iran

Abstract

Prediction of the water balance components, including actual evaporation is important for water resources management and climate change adaptation. Physically-based or distributed hydrological models are too complicated and they need lots of data as inputs to estimate the water balance components. Also the accuracy and the quality of the inputs can affect the accuracy of the models’ prediction. In some cases, it is not needed to have an accurate estimation of the water balance components and a primary estimation of annual evaporation and runoff is adequate for the management of the catchments. For these purposes, the conceptual lumped models were developed for the primary studies of hydrology. One of the most applied lumped models is developed based on Budyko hypothesis. Budyko curves were applied for the steady-state catchments in which the soil water storage is negligible. In the Budyko framework, a new equation (Greve et al., 2016)was developed to estimate evaporation in non-steady-state situations where the soil water storage cannot be negligible. In this study, the new proposed model was calibrated for the non-steady-state catchment of Neishaboor-Rokh using the precipitation, potential evaporation and actual evaporation and then using the calibrated equation, actual evaporation was estimated for the historical (1971-2005) and future (2016-2050) period of CORDEXproject. Based on the actual evaporation from SWAT model, Greve et al. model parameters (y0 and k) were 0.24 and 1.54, respectively. The results showed that, under climate change, the precipitation rate would decrease by 0.48% and mean temperature, potential evaporation and actual evaporation would increase by 11.25%, 4.66% and 2.11%, respectively.

Keywords


ایزدی،ع.1392. کاربرد و ارزیابی یک مدل توسعه یافته تلفیقی آب زیرزمینی- آب سطحی در حوضه آبریز نیشابور، رساله دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
حمیدی کاریزنوئی،ز.1392. ارزیابی روش­های تجربی برآورد تبخیر- تعرق واقعی سالانه در مقیاس بزرگ به کمک تبخیر- تعرق برآوردی از مدل SWAT، پایان نامه کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
مهندسین مشاور آبگیر سازه طوس. 1386. ﮔﺰارش ﺗﻤﺪﯾﺪ ﻣﻤﻨﻮﻋﯿﺖ ﻣﺤﺪوده ﻣﻄﺎﻟﻌﺎﺗﯽ ﻧﯿﺸﺎﺑﻮر.
مهندسین مشاور سازآبشرق. 1387. مطالعاتبه هم پیوسته منابع آب حوضه نیشابور، گزارشهای هواشناسی، هیدرولوژیو خاکشناسی، مشهد.
میان­آبادی،آ.، علیزاده،ا.، ثنایی نژاد،ح.، بنایان اول،م. و فریدحسینی،ع.1392. ارزیابی آماری خروجی مدل CMORPH در برآورد بارش شمال شرق ایران (مطالعه موردی: خراسان شمالی)، مجله آب و خاک. 27 .5: 927-919.
ولایتی،س.، توسلی،س. 1370. منابع و مسائل آب خراسان. موسسه چاپ و انتشارات آستان قدس رضوی، مشهد، ایران.
یاوری،م. 1392. ارزیابی روش­های تجربی برآورد تبخیر و تعرق واقعی سالانه در مقیاس بزرگ به کمک تبخیر و تعرق برآوردی از روش سبال در دشت نیشابور، پایان­نامه کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
Arnold,J.G., Srinivasan,R., Muttiah,R.S., Williams,J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resourses Association. 34: 73–89.
Arora,V.K. 2002. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology. 265, 164–177.
Budyko, M.I. 1951. On climatic factors of runoff. Problem Fiziology and Geography. 16: 41-48.
Budyko,M.I. 1958. The Heat Balance of the Earth’s Surface. US Department of Commerce, Washington DC.
Budyko,M.I., Zubenok,L.I. 1961. The determination of evaporation from the land surface. Izvestiya,Akademy and Nauk of SSSR Geography. 6, 3–17.
Budyko,M.I. 1974. Climate and Life. AcademicPress, Orlando. Florida. 508 pp.
Chen,X., Alimohammadi,N., Wang,D. 2013. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research. 49: 6067–6078.
Donohue,R.J., Roderick,M.L., McVicar,T.R. 2012. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology. 436-437: 35–50.
Dooge,J.C.I., Bruen,M., Parmentier,B. 1999. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. Advances in Water Resources. 23:153–163.
Fu,B.P. 1981. On the calculation of the evaporation from land surface. ScientiaAtmospherica Sinica. 5:23–31.
Fu,G., Charles,S.P., Yu,J., Liu,C. 2009. Decadal Climatic Variability, Trends, and Future Scenarios for the North China Plain. Journal of Climatology. 22:2111–2123.
Greve,P., Gudmundsson,L., Orlowsky,B., Seneviratne,S.I. 2016.A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation.. Hydrology and Earth System Sciences.20 (6):2195–2205.
Han,S., Hu,H., Yang,D., Liu,Q. 2011. Irrigation impact on annual water balance of the oases in Tarim Basin, Northwest China. Hydrologic Processes. 25:167–174.
Hargreaves,G., Samani,Z. 1982. Estimating potential evapotranspiration. Journal of Irrigation and Drainage Division. 108:225–230.
IPCC. 2013. Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the IPCC 5th Assessment Report - Changes to the Underlying Scientific/Technical Assessment.
Izady, A., Davary,K., Alizadeh,A., Ziaei, A.N., Akhavan,S., Alipoor,A., Joodavi,A., Brusseau,M.L. 2015. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeology Journal. 23: 47–68.
Masui,T., Matsumoto,K., Hijioka,Y., Kinoshita,T., Nozawa,T., Ishiwatari,S., Kato,E., Shukla,P.R., Yamagata,Y., Kainuma,M. 2011. An emission pathway for stabilization at 6 Wm-2 radiative forcing. Climatic Change. 109(1); 59-76.
Monteith,J.L. 1965. Evaporation and environment. In the state and movement of water in living organisms, XIXth Symposium Society of Experimental Biology, Swansea, Cambridge University Press.
Neitsch,S., Arnold,J., Kiniry,J., Williams,J. 2009. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources. Institute, TR-406. 1–647.
Nemec,J., Schaake, J. 1982. Sensitivity of water resource systems to climate variation. Hydrological Sciences Journal. 27: 327–343.
Niemann,J.D., Eltahir,E.A.B. 2005. Sensitivity of regional hydrology to climate changes, with application to the Illinois River basin. Water Resources Research. 41, W07014: 1-15.
Ol’dekop,E.M. 1911. On evaporation from the surface of river basins. Transactionson Meteorological Observations. 4, 200.
Pike,J.G. 1964. The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology. 2: 116–123.
Porporato,A., Daly,E., Rodriguez-Iturbe,I. 2004. Soil water balance and ecosystem response to climate change. The American Naturalist. 164: 625–632.
Priestley,C.H.B., Taylor,R.J. 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review. 100: 81–92.
Qi,C., Grunwald,S. 2005. GIS-based hydrologic modeling in the Sandusky watershed using SWAT. Transactions of the ASAE. 48:169–180.
Riahi,K., Rao,S., Krey,V., Cho,C., Chirkov,V., Fischer,G., Kindermann,G., Nakicenovic,N., Rafaj,P.2011.  RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change. 109: 33–57.
Roderick,M.L., Farquhar,G.D. 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resoursec Research. 47, W00G07: 1-11.
Schreiber,P. 1904. About the relationship between the precipitation and the water management of the river in Central Europe. Meteorology. 21:441– 452.
Teng,J., Chiew,F.H.S., Vaze,J., Marvanek,S., Kirono,D.G.C.2012. Estimation of Climate Change Impact on Mean Annual Runoff across Continental Australia Using Budyko and Fu Equations and Hydrological Models. Journal of Hydrometeorology. 13: 1094–1106.
Thomson,A.M., Calvin,K.V., Smith,S.J., Kyle,G.P., Volke,A., Patel,P., Delgado-Arias,S., Bond-Lamberty,B., Wise,M.A., Clarke,L.E., Edmonds,J.A. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change. 109, 77–94.
Turc,L. 1954. The water balance of the soil. Relationship between precipitation, evaporation and runoff. Annals of Agronomy. 5: 491– 569.
van Vuuren,D.P., Edmonds,J., Kainuma,M., Riahi,K., Thomson,A., Hibbard,K., Hurtt,G.C., Kram,T., Krey,V., Lamarque,J.F., Masui,T., Meinshausen,M., Nakicenovic,N., Smith,S.J., Rose,S.K. 2011a. Therepresentative concentration pathways: An overview. Climatic Change. 109:5–31.
van Vuuren,D.P., Stehfest,E., den Elzen,M.G.J., Kram,T., van Vliet,J., Deetman,S., Isaac,M., Goldewijk,K.K., Hof, A., Beltran,A.M., Oostenrijk,R., van Ruijven,B. 2011b. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change 109, 95–116.
Wang,D. 2012. Evaluating interannual water storage changes at watersheds in Illinois based on long-term soil moisture and groundwater level data. Water Resources Research. 48, W03502: 1-12.
Wang,D., Tang,Y. 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophysical Research Letters. 41: 4569–4577.
Yang,D., Sun,F., Liu,Z., Cong,Z., Ni,G., Lei,Z. 2007. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research. 43, W04426:1–12.
Yang,H., Yang,D., Lei,Z., Sun,F. 2008. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research. 44, W03410: 1-9.
Zhang,L., Hickel,K., Dawes,W.R., Chiew,F.H.S., Western,A.W., Briggs,P.R. 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research. 40, W02502: 1-14.
Zhou,S., Yu,B., Huang,Y., Wang,G. 2015. The complementary relationship and generation of the Budyko functions. GeophysicalResearch Letters. 42: 1781–1790.