پیش‌بینی جریان روزانه رودخانه با استفاده از مدل‌های داده محور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانش آموخته کارشناسی ارشد مهندسی منابع آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

پیش­بینی صحیح جریان روزانه رودخانه یک ابزار مناسب برای برنامه­ریزی و مدیریت منابع آب سطحی می­باشد.  به کارگیری مدل­هایی مانند مدل درختی M5 و برنامه­ریزی بیان ژن (GEP) که معادلات صریحی را برای پیش­بینی ارایه می­کنند موجب افزایش کارایی مدل­های پیش­بینی می­شود. در این مطالعه جهت پیش‌بینی دبی جریان روزانه رودخانه، حوضه آب­ریزگالیکش از مناطق سیل‌خیز استان گلستان به عنوان منطقه مطالعاتی استفاده شد. داده‌های بارش و دبی جریان روزانه ایستگاه‌های هواشناسی و هیدرومتری گالیکش در یک دوره آماری 26 ساله (1388-1363)، استفاده و متغیرهای مستقلی از بارش و دبی جریان روزانه یک تا پنج گام زمانی قبل تشکیل شد و بر اساس آن­ها پیش­بینی دبی جریان روزانه با سه  مدل درختی M5 و برنامه­ریزی بیان ژن و مدل شبکه عصبی مصنوعی پرسپترون انجام شد. نتایج نشان داد که هر سه مدل دارای کارایی مناسب می­باشند و هم­چنین میزان جریان را بیش­تر از مقادیر مشاهداتی برآورد می­کنند. مقایسه نتایج مدل­های مختلف نشان­دهنده برتری نسبی مدل درختی M5 نسبت به مدل­های دیگر می­باشد. در حالت کلی می­توان گفت که هر سه روش مذکور ضمن رقابت با یکدیگر نتایج نسبتاً دقیقی را جهت پیش­بینی جریان روزانه در منطقه مورد نظر ارایه می­کنند ولی به دلیل ارایه روابط خطی ساده و قابل فهم توسط مدل درختی M5، این روش می­تواند به عنوان روشی کاربردی و جایگزین برای پیش­بینی جریان روزانه مورد توجه قرار گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Daily Stream-flow Using Data Driven Models

نویسندگان [English]

  • Meysam Salarijazi 1
  • Khalili Ghorbani 1
  • Elahe Sohrabian 2
  • Mohammad Abdolhosseini 1
1 Assistant Professor, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources., Gorgan., Iran
2 Graduated Student of M.Sc. of Water Resources Engineering, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources., Gorgan., Iran
چکیده [English]

Accurate prediction of river daily discharge is a suitable tool for water resources planning and management. Using models that present explicit equation, such as M5 model trees and Genetic expression programming, causes increase efficiency of these models. In this study, the Galikesh basin as one of most flood prone basins in Gloestan Province is considered for the prediction of river daily discharge. Data series used in this study are long term 26 years daily rainfall and river discharge series belong to Galikesh meteorology and hydrometry station. Daily rainfall and river discharge data from 1 to 5 days ahead are used as inputs for prediction by M5 model trees, genetic expression programming and artificial neural network models. The results indicate very good efficiency of the investigated models beside overestimation of the models to predict daily river discharge. Comparison of results of different models leads to selection of M5 model trees as best model among investigated models. 

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Data driven models
  • Galikesh basin
  • Genetic expression programming
  • River discharge prediction
  • M5 model trees
داننده مهر،ع و مجدزاده طباطبایی،م.ر. 1388. بررسی تاثیر توالی دبی روزانه در پیش بینی جریان رودخانه­ها با استفاده از برنامه­ریزی ژنتیک. نشریه آب و خاک (علوم و صنایع کشاورزی). 24. 2: 333-325
شایان نژاد،م. 1385. مقایسه دقت روش­های شبکههای عصبی مصنوعی و پنمن-مانتیس در محاسبه تبخیر و تعرق پتانسیل. اولین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، دانشگاه شهید چمران اهواز.
ظهیری،ع و  قربانی،خ. 1391. شبیه­سازی دبی جریان در مقاطع مرکب به کمک مدل درخت تصمیم M5. مجله پژوهش­های حفاظت آب و خاک. 20، 3: 132-113
فلاحی،م.ر.، وروانی،ه و گلیان،س. 1390. پیش­بینی بارش با استفاده از مدل رگرسیون درختی به منظور کنترل سیل. پنجمین کنفرانس سراسری آبخیزداری و مدیریت منابع آب و خاک کشور. انجمن مهندسی آبیاری و آب ایران. کرمان.
منهاج،م.ب. 1393. مبانی شبکه­های عصبی. انشارات دانشگاه صنعتی امیرکبیر. 718 صفحه.
Bhattacharya,B and Solomatine,D.P. 2005. Neural networks and M5 model trees in water level- discharge relationship. J. Neurocomputing.63, 381-396.
Ferreira,C. 2001. Gene expression programming a new adaptive algorithm for solving problems. Complex Systems. 13:2.87–129
Ferreira,C. 2004. Gene Expression Programming and the Evolution of Computer Programs. Recent Developments in Biologically Inspired Computing, pages 82-103, Idea Group Publishing.
Fernando,K.A., Shamseldin,A.Y., Abrahart,R.J. 2012. River Flow Forecsting Using Gene Expression Programming Models. 10th International Conference on Hydro informatics, HIC 2012, Hamburg, Germany.
Koza,J.R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: The MIT Press.
Karayiannis,N. and Venetsanopoulos,A.N. 1993. Artifical Neural Network: Learning Alogorithms, Performance Evaluation, and Application. Kluwer Academic Publisher, Boston. 440p.
Liong,S.Y., Gautam,T.R., Khu,S.T., Babovic,V., Keijzer,M and Muttil,N. 2002. Genetic programming, A new paradigm in rainfall runoff modeling. Journal of the American Water Resources Association.  38.3: 705-718.
Londhe,S.N and Dixit,P.R. 2010. Forecasting Stream Flow Using Model Trees. International Journal of Earth Sciences and Engineering. 4.6: 282-285.
Legates,D.R and McCabe,G.J. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydro climatic model validation. Water Resources Research. 35:1.233–241.
Quinlan,J.R. 1992. Learning with continuous classes. P 343-348, In: Proceedings of Fifth Australian joint conference on artificial intelligence, Singapore.
Sattari,M.T., Pal,M., Apaydin,H.,Ozturk,F. 2013. M5 model tree application in daily river flow forecasting in Sohu Stream, Turkey, Water Resources. 40.3: 223-242.
Solomatine,D.P., Xue,Y. 2004. M5 model trees and neural networks: Application to flood Forecasting in the upper reach of the Huai river in China. Journal of Hydrologic Engineering. 9. 6: 491-501.  
Witten,I.H and Frank,E. 2005. Data mining: practical machine learning toolsand techniques with Java implementations. Morgan Kaufmann: San Francisco.
Whigham,P.A and Crapper,P.F. 2001. Modeling rainfall runoff using Genetic programming. Mathematical and Computer Modeling. 33: 707-721.