تحلیل فراوانی جریان‌های کمینه حوضه آبریز دز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری منابع آب دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار گروه مهندسی منابع آب، دانشگاه شهید چمران، اهواز، ایران

3 استاد گروه آمار دانشگاه شهید چمران، اهواز، ایران

4 استادیار گروه مهندسی آب دانشگاه شهرکرد، شهرکرد، ایران

چکیده

خشکسالی یکی از بلایای طبیعی است کـه جوامع بشری، گیاهی و اکولوژی محیط را بـه شـدت تحـت تاثیر قرار می­دهد. این پدیـده دارای مکانیسـم پیچیده­ای بوده که ماهیـت آن کم­تر شـناخته شـده است. بـرآورد دقیـق جریان کمینه به عنوان معیـاری جهـت اهـداف مختلـف در مدیریت منابع آب از جمله خشکسالی از اهمیت بسزایی برخوردار است. با توجه به ماهیت پیچده کم­آبی­ها و مطالعات محدود صورت گرفته، هم­چنان تحلیل فراوانی جریان­های کمینه یکی از روش­های مورد توجه محققان است. بنابراین، در مطالعه حاضر آنالیز فراوانی جریان کمینه حوضه آبریز دز با تداوم­های مختلف (7، 10، 15، 30، 60 و 95 روزه) در دوره آماری 1391-1335 با استفاده از توزیع­های نرمال (NOR)، لوگ نرمال (LN)، پیرسون تیپ سه (P3)، نمایی (EXP)، گاما (GAM)، توزیع مقادیر حدی تعمیم یافته (GEV)، ناکاگامی (NAK)، رایلی (RAY)، لجستیک (LOG)، لجستک تعمیم یافته (GLOG)، پارتوی تعمیم یافته (GPA) و ویبول (WEI) انجام شد. قبل از برازش توزیع­های آماری، ایستایی و همگنی سری­های جریان کمینه حوضه آبریز دز به ترتیب با استفاده از آزمون­های من- کندال اصلاح شده و آزمون ریشه واحد دیکی- فولر (ADF) مورد بررسی قرار گرفت. نتایج حاصل از این آزمون­ها همگنی و ایستایی داده­ها را تایید نمود. در مرحله بعد، توزیع­های آماری مختلف بر روی سری­های جریان کمینه برازش داده شد و به منظور تعیین توزیع مناسب از آماره­های جذر میانگین مربعات نرمال شده (NRMSE) و معیار نش-ساتکلیف (NS) استفاده گردید. نتایج به دست آمده نشان داد که توزیع­های آماری LOG و GEV بیش­ترین تطابق را با داده­های جریان کمینه حوضه آبریز دز داشته است. همچنین توزیع نرمال نیز از عملکرد بسیار خوبی در برآورد جریان کمینه برخوردار بوده و به دلیل سهولت در کاربرد می­تواند با خطای قابل قبول برای برآورد جریان کمینه حوضه آبریز دز انتخاب گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Frequency Analysis of Low Flow in Dez River Basin

نویسندگان [English]

  • Farshad Ahmadi 1
  • Fereydoun Radmanehs 2
  • Gholam Ali Parham 3
  • Rasoul Mirabbasi Najaf Abadi 4
1 Ph.D Student, Water Resources Engineering Department., Faculty of Water Sciences Engineering. University of Ahvaz., Ahvaz., Iran
2 Ph.D Candidate of Water Resources Engineering. Shahid Chamran University., Ahvaz., Iran
3 Professor, Department of Statistics, Shahid Chamran University., Ahvaz., Iran
4 Assistant Professor, Water Engineering Department, Shahre Kord University., Shahre Kord., Iran
چکیده [English]

Drought is one of the natural hazards which have serious effects on human life, and environment. This phenomena has a complicated mechanism that its nature had been little-known. Accurate estimation of low flow as an index in water resources management has a great importance. Because of the complicated nature of low flows, a few numbers of studies conducted in this field of study, and the frequency analysis of low flow is of interest to researchers. Therefore, in the present study, the frequency of low flows in the Dez river basin with different durations (7, 10, 15, 30, 60 and 95 days) were done using the distribution functions of the Normal (NOR), Log-Normal (LN), Pearson Type III (P3), Exponential (EXP), Gamma (GAM), Generalized Extreme Value (GEV), Nakagami (NAK), Rayleigh (RAY), Logistic (LOG), Generalized Logistic (GLOG), Generalized Pareto (GPA) and Weibull (WEI). Before fitting the statistical distribution functions on low flow series, the homogeneity and stationarity of low flow series in the Dez river basin were investigated by Augmented Dickey - Fuller (ADF) and modified Mann-Kendall tests, respectively. The results of these tests confirmed the homogeneity and stationarity of used data series. In the next step, above mentioned distribution functions were fitted on low flow series and the goodness of fit were evaluated by normalized root mean square error and Nash- Sutcliffe criteria. The results reveal that the LOG and GEV distribution functions were the best fitness on low flow series in the Dez river basin. The Normal distribution has also good performance in estimating the low flow and because of its easier application can be considered as an alternative for estimating low flow in the Dez river basin by acceptable error.

کلیدواژه‌ها [English]

  • Dez river basin
  • Frequency analysis
  • Homogeneity
  • Low flow
  • Return period
  • Stationarity

احمدی،ف.، رادمنش،ف.، و میرعباسی نجف آبادی،ر. 1394. تحلیل روند متوسط درجه حرارت نیمه جنوبی ایران در چهار دهه اخیر. مجله دانش آب و خاک. 3.25: 225-211.

احمدی،ف.، زمانی،ر.، رادمنش،ف.، و امیررضائیه،ع. 1394. بررسی وقوع تغییرات اقلیمی در حوضه­های آبریز با استفاده از تحلیل ایستایی و روند (منطقه مورد مطالعه: حوضه آبریز ارمند). مجله پژوهش­های حفاظت آب و خاک. 5.22: 61-45.

اسلامیان،س.، قاسمی،م و سلطانی،س .1391. محاسبه و ناحیه­بندی شاخص­های جریان کم و تعیین دوره­های خشکسالی هیدرولوژیک (مطالعه موردی :حوضه آبخیز کرخه) مجله علوم و فنون کشاورزی و منابع طبیعی. علوم آب و خاک. 59.16: 14-1.

خزایی،م.ر. 1380. پیش­بینی شدت خشکسالی و کمبود جریان، پایان­نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه علم و صنعت، تهران.

خزایی،م.ر.، تلوری،ع.، و جباری،ا .1382. تحلیل توزیع فراوانی خشکسالی هیدرولوژیک (مطالعه موردی حوضه رودخانه قرسو). مجله جغرافیا و توسعه. 2.1: 56-45.

خلیلی،ک.، ناظری تهرودی،م و احمدی،ف. 1394. کاربرد شاخص PCI در بررسی الگوی بارش ایران و تحلیل روند تغییرات آن در مقیاس سالانه و فصلی طی نیم قرن اخیر. مجله آبیاری و زهکشی ایران. 9.1: 208-195.

خلیلی،ک.، احمدی،ف.، بهمنش،ج.، و وردی­نژاد،و.ر. 1391. بررسی تاثیر تغییر اقلیم بر روی دمای هوا و جریان رودخانه شهرچای واقع در غرب دریاچه ارومیه با استفاده از تحلیل روند و ایستایی. مجله علوم و مهندسی آبیاری. 4.35: 108-97.

رحیمی،ل.، دهقانی،ا.ا.، عبدالحسینی،م.، و قربانی،خ. 1393. تحلیل فراوانی سیلاب با استفاده از توابع مفصل ارشمیدسی بر مبنای سری حداکثر سالانه (مطالعه موردی ایستگاه هیدرومتری ارازکوسه در استان گلستان). مجله آبیاری و زهکشی ایران. 8.2: 365-353.

رضایی­پژند،ح. 1380. کاربرد آمار و احتمال در منابع آب. انتشارات سخن گستر.

قیداری،م.ح.، حسینی تودشکی،و. 1394. نگرشی نو در آنالیز فراوانی جریان­های حداقل هفت روزه (مطالعه موردی حوضه آبریز دریاچه ارومیه). مجله دانش آب و خاک. 4.23: 116-105.

Dickey,D.A and Fuller,W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of American Statistical Association. 74: 423-431.

Dinpashoh,Y., Mirabbasi,R., Jhajharia,D., Zare Abianeh,H., and Mostafaeipour,A. 2014. Effect of short term and long-term persistence on identification of temporal trends. Journal of Hydrologic Engineering. 19.3: 617-625.

Grimaldi,S., Kao.S.C., Castellarin,A., Papalexiou,S.M., Viglione,A., Laio,F., Aksoy,H and Gedikli,A. 2011.2.18-Statistical Hydrology. In : P. Wilderer(ed.) Treatise on Water Science, Elsivier, Oxford:479-517.

Haan,C.T. 1977. Statistical Methods in Hydrology. Iowa State University Press, Ames, Iowa, USA.

Hamed,K.H. and Rao,A.R. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology. 204: 182–196.

Hemadi,K., Abdovis,S., Zohrabi,N. 2013. Frequency analysis of low-flows in the large Karoun River basin in Iran. International Research Journal of Applied and Basic Sciences. 4.1:146-151.

Khalili,K., Tahoudi,M.N., Mirabbasi,R and Ahmadi, F. 2015. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment. 1-17.

Kumar,R., Goel, N.K., Chatterjee,C and Nayak,P.C. 2015. Regional flood frequency analysis using soft computing techniques. Water Resources Management. 29.6: 1965-1978.

Kumar,S., MerwadeV., Kam,J and Thurner,K. 2009. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology. 374: 171-183.

Mishra,A.K., Singh,V.P. 2010. A review of drought concepts. Journal of Hydrology. 391: 202-216.

Modarres,R. 2008. Regional frequency distribution type of low flow in north of Iran by L-Moments. Water Resources Management. 22.7: 823-841.

Pearson,C.P. 1995. Regional frequency analysis of low flow in New Zealand Rivers. Journal of Hydrology. 30.2: 53-64.

Said,S.E., and Dickey,D. 1984. Testing for unit roots in autoregressive moving-average models with unknown order. Journal of Biometrika. 71: 599-607.

Sandoval,C.A. 2009. Mixed distribution in low flow Frequency Analysis. Journal of Hydrology 58.1: 247-253.

Shi,P., Chen,X., Qu,S., Zhang,Z and Ma,J. 2010. Regional frequency analysis of low flow based on L Moments: Case study in karst area, Southwest China. Journal of Hydrologic Engineering. 15.5: 370–377.

Wang,W., Van Gelder,P.H.A.J.M and Vrijling,J.K. 2005. Trend and Stationary analysis for streamflow processes of rivers in western Europe in 20th century, IWA International conference on water economics, statictics and finance, Rethymno, Greece.

Zhang,Q., Chen,Y.D., Chen,X  and Li,J. 2011. Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering. 16.7: 598-607.