ارزیابی مدل‌های هوشمند داده محور در برآورد تبخیر- تعرق مرجع روزانه در چند اقلیم سواحل جنوبی دریای خزر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 کارشناسی ارشد مهندسی منابع آب، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در بسیاری از مطالعات تعیین میزان دقیق متغیر تبخیر-تعرق از اهمیت ویژه‌‍‌ایی برخوردار است. مدل‌های هوشمند داده محور دارای توانایی بالایی در مدل­سازی پدیده‌های پیچیده و غیرخطی هستند. در این مطالعه از چهار روش داده محور شامل شبکه‌های عصبی مصنوعی (ANN)، ماشین‌های بردار پشتیبان (SVM)، مدل درختی M5 و شبکه‌های تطبیقی مبتنی بر سیستم استنتاج فازی (ANFIS) برای مدل‌سازی تبخیر-تعرق مرجع (ETo) در سه ایستگاه از اقلیم‌های سواحل جنوبی دریای خزر با استفاده از داده‌های بلند مدت روزانه هواشناسی بهره گرفته شد. 11 ترکیب مختلف متغیر‌های هواشناسی به عنوان ورودی به مدل‌های داده محور انتخاب گردید و از شاخص‌های استاندارد آماری ضریب تبیین (R2)، ریشه میانگین مربعات خطا (RMSE) و شاخص توافق (DI) برای ارزیابی مدل‌ها استفاده شد. نتایج نشان داد که مدل ANFIS-11 با RMSE بین 2/0 تا 38/0 میلی­متر بر روز دقیق‌ترین و مدل‌هایی که ورودی آن­ها فقط سرعت باد است با R2بین 02/0 تا 39/0 و RMSE بین 35/1 تا 68/1 میلی­متر بر روز ضعیف‌ترین برآوردها را در اقلیم‌های مورد مطالعه دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Intelligent Data-Driven Models in Daily Reference Evapotranspiration Estimation in Climates of Southern Coasts of the Caspian Sea

نویسندگان [English]

  • Bahram Bakhtiari 1
  • Ali Reza Mohebbi Dehaghani 2
  • Kouroush Qaderi 1
1 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 M. Sc. Student of Water Resources Engineering, Department of Water Engineering, College of Agriculture, Shahid Bahonar University of Kerman., Kerman., Iran
چکیده [English]

In many studies accurate estimation of evapotranspiration parameter has special importance. Intelligent data-driven models have great potential in the modeling of complex and nonlinear phenomena. In this study reference evapotranspiration was  modeled by using of four data-driven method including Artificial Neural Networks (ANN), Support Vector Machines (SVM), model tree M5 and Adaptive Networks based on Fuzzy Inference System (ANFIS) with Long-term daily meteorological data in three synoptic stations of Climates of southern coast of the Caspian Sea. 11 different combinations of meteorological variables was chosen as input data-driven models and for evaluate the models many statistical were used such as correlation coefficient (R2), Root Mean Square of Error (RMSE) and index of agreement (DI). The Result that showed ANFIS-11 model  Was provided best estimations with RMSE between 0.2 ~ 0.38 mm day-1 and models with single-input wind speed was presented poorest estimations with RMSE between 1.35 ~ 1.68 mm day-1 and R2 between 0.02 ~ 1.68 in climates studied.

کلیدواژه‌ها [English]

  • ANFIS
  • ANN
  • Daily Reference Evapotranspiration
  • M5
  • SVM
احمدزاده قره‌گیوز، ک.، میرلطیفی، س.م و محمدی،ک. 1389. مقایسه سیستم‌های هوشمند (ANN و ANFIS) در تخمین میزان تبخیر-تعرق گیاه مرجع در مناطق بسیار خشک. نشریه آب و خاک، جلد 24، شماره چهار، صفحات 689-689.
خیرابی،ج.، انتصاری،م.، توکلی،ع و سلامت،ع. 1376. معرفی جهات نظری و کاربردی روش پنمن- مانتیث و ارائه تبخیر-تعرق مرجع استاندارد برای ایران. انتشارات کمیته ملی آبیاری و زهکشی، چاپ اول، 179 صفحه.
رضایی،ع و میبدی،ع. 1384. آمار و احتمالات. انتشارات دانشگاه صنعتی اصفهان، چاپ اول، 590 صفحه.
مرادی،ح.، تمنا،م.، انصاری،ح و نادریان‌فر،م. 1391. سیستم‌های استنتاج فازی جهت برآورد تبخیر تعرق مرجع ساعتی (مطالعه موردی- منطقه فریمان). مجله پژوهش‌های حفاظت آب و خاک، جلد نوزدهم، شماره اول، صفحات 168-153.
منهاج،م.ب. ۱۳79. مبانی شبکه‌های عصبی. دانشگاه صنعتی امیر کبیر، معرفی شبکه‌های عصبی مصنوعی، 715 صفحه.
Adeloye,A.J., Rustum,R., Kariyama,I.D. 2012. Neural computing modeling of the reference crop evapotranspiration. Environmental Modelling and software, 29: 61-73.
Allen,R.G., Pereira,L.s., Raes,D., smith,M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage, Paper No. 56., FAO, Rome, 356 pages.
Cimen,M., Kisi,O. 2009. Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. Journal of Hydrology, 378: 253-262.
Cobaner,M. 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398: 292–302.
Ditthakit,P., Chinnarasri,C. 2012. Estimation of Pan Coefficient using M5 Model Tree. American Journal of Environmental sciences 8 (2): 95-103.
Eslamian,S.S., Abedi-Koupai,J., Amiri,M.J., Gohari,S.A. 2009. Estimation of daily reference evapotranspiration using support vector machines and, artificial neural networks in greenhouse. Research Journal of Environmental Sciences, 3 (4): 439-447.
Huo,Z., Feng,S., Kang,S., Dai,X. 2012. Artificial neural network models for reference evapotranspiration in an arid area of northwest China. Journal of Arid Environments, 82:  81- 90.
Pulido-Calvo,I., Gutie´rrez-Estrada,J.C. 2009. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems engineering, 102: 202–218.
Quinlan,J.R. 1992. Learning with continuous classes. In- Adams, A. sterling, L. (eds) Proc. AI’92, 5th Australian Joint Conference on Artificial Intelligence. World scientific, singapore, 343–348.
Shing,J., Jang,R. 1993. ANFIS- Adaptive-Network-Based Fuzzy Inference System. Man and Cybernetics, 23(3): 665-685.
Tabari,H., Kisi,O., Ezani,A and Talaee,P. 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444-445: 78-89.
Willmott,C.J. 1981. On the validation of models. Physical Geography 2: 184–194.