برآورد عملکرد برنج در بخشی از شبکه سفیدرود گیلان با استفاده از تصاویر ماهواره لندست ( مطالعه موردی: صومعه سرا)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشیار آبیاری و زهکشی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 استادیار آبیاری و زهکشی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 استادیار گروه مهندسی آب دانشگاه گیلان، رشت، ایران

چکیده

برآورد زود هنگام عملکرد برنج نقش مهمی در مدیریت مواد غذایی کشور دارد. پژوهش حاضر برای بررسی امکان برآورد عملکرد برنج در شهرستان صومعه­سرای استان گیلان با استفاده از چهار تصویر ماهواره لندست پنج و هفت انجام شده است. شاخص­های NDVI، SAVI و  LAIاز­ تصاویر استخراج و رابطه آن­ها با صفات عملکرد، زیست­توده و کاه اندازه­گیری شده از80 مزرعه کشاورزان محلی به دست آمد. نتایج نشان داد بالاترین ضریب­ تبیین برای برآورد زیست­توده با شاخصNDVI مربوط به تصویر ماهواره لندست پنج در دوره گلدهی (59/0= R2) با خطای اندازه­گیری 12­درصد، معادل 1030 کیلوگرم در هکتار می­باشد. خطای اندازه­گیری برای عملکرد شلتوک و کاه تولیدی به ترتیب 12و 15 درصد معادل 434 و 711 کیلوگرم­ در هکتار بود. بالاترین ضریب تبیین رابطه میان LAI و مقدار زیست­توده، عملکرد و کاه تولیدی مربوط به­همین تصویر به­ترتیب معادل 60/0، 51/0 و 54/0 می­باشد. خطای برآورد 919، 380 و 706 کیلوگرم در هکتار بود. شاخص SAVI در مقایسه با NDVI و LAI بالاترین دقت را داشته است. مقدار ضرایب تبیین برای زیست­توده، عملکرد و کاه به­ ترتیب برابر 69/0، 58/0و 63/0 و خطا 10، 10 و 14 درصد معادل 870، 375 و 680 کیلوگرم در هکتار بوده است. که منجر به نتایج دقیق­تری برای برآورد مقدار زیست­توده عملکرد و کاه تولیدی برنج در سطح وسیع شده است. نتایج نشان داد فناوری سنجش از دور توانایی برآورد عملکرد برنج را یک ماه قبل از برداشت برنج با دقت مناسبی دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of paddy field rice yield in the Sephidrud system using Landsat images (case study : Some Sara)

نویسندگان [English]

  • Mojtaba Rezaei 1
  • Mahmoud Raeini Sarjaz 2
  • Ali Shahnazari 3
  • Majid Vazifedoust 4
1 PhD student, Irrigation Science Dept., Sari university of Agricultural Science and Natural Resources.., Sari., Iran
2 Associated Professor, Irrigation Science Dept., Sari university of Agricultural Science and Natural Resources., Sari., Iran
3 Assistant Professor, Irrigation Science Dept., Sari university of Agricultural Science and Natural Resources., Sari., Iran
4 Assistant Professor Irrigation Science Dept., university of Guilan., Rasht., Iran
چکیده [English]

Early and precise estimation of rice production is a nationwide need in order to early import forecasting. The present study was carried out in the Sephidrod irrigation network of Iran to assess feasibility and accuracy of using remote sensing imagary in predicting regional rice yield. Four Landsat 5 and 7 images were acquired and processed, then NDVI, SAVI and LAI indices were calculated. For the second step a simple linear equation was fitted between these indices and rice biomass (BM), yield (Yld) and straw (St) measured in 110 paddy fields of common farmers. The results showed the best correlation between NDVI and BM achieved from Landsat5 in flowering stage of rice (R2=0.59, RMSE= 1030 kgha-1, NRMSE= 12%), For yield and St RMSE and NRMSE were : 12%, 434 and 15%, 711  kg.ha-1 . In term of using LAI the best correlation coefficient for BM, Yld and St were 0.6, 051 and 0.54. The observed inaccuracy were 919, 380 and 706  kg.ha-1 . A better correlation was observed between measured traits and SAVI comparing with NDVI and LAI. The correlation coefficient for Bm, Yld and St were 0.69, 0.58 and 0.53 with inaccuracy of 10%, 10% and 14% . RMSE for SAVI were 870, 375 and 680 kg.ha-1 for Bm, Yld and St, respectively. The result showed that remote sensing could estimate rice yield at flowering stage, at least 30 days before harvesting.

کلیدواژه‌ها [English]

  • NDVI
  • Paddy
  • Remote Sensing
  • Yield
  • Etm+
خواجه­الدین،س.ج و پورمنافی،س.1۳۸۶ .تعیین سطح شالیزارهای حاشیه زاینده رود در منطقه اصفهان با داده­های رقومی سنجنده ­های ماهوارIRS11، مجله علوم و فنون کشاورزی و منابع طبیعی (1): ۵۲۸-۵۱۳.

 ضیائیان فیروزآبادی،پ.، صیاد بیدهندی،ل و اسکندری نوده،م. 1388. تهیة نقشه و تخمین سطح زیرکشت برنج در شهرستان ساری با استفاده از تصاویر ماهواره­ای رادارست (RADARSAT). پژوهش های جغرافیای طبیعی، تابستان 1388.  ( 68): 58– 45.

ساروئی،س  و نصیری،ع. 1381. بهره­گیری از فن آوری سنجش از دور در تهیه آمار و نقشه اراضی زیر کشت برنج در شمال کشور(شهرستان­های آمل و بابل)، همایش ژئوماتیک ۸۱ ، سازمان نقشه برداری کشور، تهران.

مالمیریان،ح. 1379. اصول و مبانی سنجش از دور و تعبیر و تفسیر تصاویر هوایی و ماهواره ای (ترجمه)، سازمان جغرافیایی نیروهای مسلح، 350 صفحه.

مختاری،ش. 1390. توسعه و کاربرد یک مدل ساده (VSM) جهت تخمین منطقه­ای عملکرد برنج با بهره­گیری از داده­های
ماهواره­ای. گروه مهندسی آب دانشکده علوم کشاورزی دانشگاه گیلان.

Aboelghar,M., Arafat, S., Abo Yousef, M., El-Shirbeny, M., Naeem, S., Massoud, A., and Saleh, N., 2011. Using SPOT data and leaf area index for rice yield estimation in Egyptian Nile delta, The Egyptian Journal of Remote Sensing and Space Sciences.14:2 .81-89.

Bastiaanssen Wim,G.M and Ali,S. 2003. new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Journal of Ecosystems and Environment. 94: 321–340.

Behrens,T., Muller,J and Diepenbrock,W. 2006. Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. Europ. Journal of Agronomy.25:345-355.

Casanova,D., Epema,G.F., Goudrian,J. 1998. Monitoring rice reflectance at field level for estimating biomass and LAI, Journal of Field Crops Research. 55: 83–92.

Chen,R.K and Yang,C.M. 2005. Determining the optimal timing for using LAI and NDVI to predict rice yield, Journal of Photogrammetry and Remote Sensing. 10:3. 239-254.

Dadhwal,V.K and Ray,S.S. 2000. Crop Assessment using remote sensing – Part II: Crop condition and yield assessment, Indian Journal of Agricultural Economics, 55 :2 . 55-67.

Delécolle,R., Maas,S.J., Guérif,M. 1992. Remote sensing and crop production models: Present trends. The ISPRS Journal of Photogrammetry and Remote Sensing. 47: 145-161.

El Nahry,A.H.,  Ali,R.R and El Baroudy,A.A. 2011. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Journal of Agricultural Water Management. 98: 517-531.

Fischer,A., Kergoat,L and Dedieu,G. 1997. Coupling satellite data with vegetation functional models: Review of different approaches and perspectives suggested by the assimilation strategy. Journal of Remote Sensing Reviews. 15: 283-303.

Groten,S.M.E. 1993.  NDVI- crop monitoring and early yield assessment of Burkina Faso. International journal of remote sensing, 14:8. 1495-1515.

Huete,A.R. 1988. Soil adjusted vegetation index (SAVI). Journal of Remote Sensing of Environment. 25: 295-309.

Lewis,J.E., Rowland,J and Nadeau,A. 1998. Estimating maize production in Kenya using NDVI: some statistical considerations. International journal of remote sensing, 19 :13. 2609– 2617.

Leon,C.T., Shaw,D.R., Cox,M.S.,  Abshire, M.J., Ward,B and Wardlaw,M.C. 2003. Utility of remote sensing in predicting crop and soil characteristics. Journal of Precision Agriculture, Kluwer Academic Publishers, vol. 4, pp. 359-384

Lu,D., Mausel,P., Brondizio,E and Moran,E. 2002. Assessment of atmospheric correction methods for Landsat TM data application to Amozon basin, LBA research, International journal of remote sensing, 23:13. 2651-2671.

Monteith,J.L. 1972. Solar radiation and productivity in tropical ecosystems, Journal of Applied Ecology . 9 :747-766.

Parodi Gabriel,N. 2002. AHVRR Hydrological Analysis System: Algorithms and theory, Version 1.3, WRES – ITC.

Ren,J., Chen,Z., Zhou,Q and Tang,H. 2008. Regional yield estimation for winter wheat with MODIS- NDVI data in Shandong China. International  Journal of Applied Earth Observation and Geoinformation. 10: 403-413.

Sharma,T., Sudha,K.S., Ravi,N., Navalgund,R.R., Tomar,K.P., Chakravarty,N.V.K and Das,D.K. 1993. Procedures for wheat yield prediction using Landsat MSS and IRS-1A data, International journal of remote sensing. 14:13. 2509– 2518.

Sharma,N., Piscioneri,I., Baviello,G and Orlandini,S. 2000. Promising industrial energy crop, Cynara cardunculus: a potential source for biomass production and alternative energy. Journal of  Energy Conversion and Management. 41:10.1091-1105.

Shen,S.H., Yang,S.B and Li,B.B. 2009. A scheme for regional rice yield estimation using ENVISAT ASAR data. journal of Science in China series D: Earth Sciences. 52:8. 1183-1194,

Shi,H and Mo,X. 2011. Interpreting spatial heterogeneity of crop yield with a process model and remote sensing. Journal of Ecological Modelling. 2:22. 2530- 2541.

Xiao,X., He,L., Salas,W., Li,C., Moore,B., Zhao,R., Frolking,S and Boles,S. 2002. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields. International journal of remote sensing, 23:18. 3595-3604.

  Yang,X.H., Wang,F.M., Huang,J.F., Wang,J.W., Wang,R.C., Shen,Z.Q and Wang,X.Z. 2009. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parametersusing. Journal of remote sensing, Pedosphere. 19:2. 176-188.