تحلیل دینامیکی تأثیر مدیریت آبیاری بر دماهای آستانه‌ی خاک با مدل HYDRUS2D

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب، دانشگاه زابل، زابل، ایران

چکیده

دماهای آستانه­ی خاک یکی از مهم­ترین مؤلفه­های اثرگذار بر ویژگی­های بیولوژیکی گیاهان بوده و تا حد زیادی می­تواند رشد ریشه و در پی آن، جذب آب و عناصر غذایی از خاک را متاثر سازد. از آن­جایی که رطوبتِ خاک، سهم مهمی در کنترل دمای خاک دارد، پیش­بینی آثارِ محتمل اعمال یک استراتژی معین آبیاری می­تواند امکان انتخاب شیوه­ی مناسب با هدف افزایش کارآیی مصرف آب و عناصر غذایی را فرآهم سازد. بنابراین در این پژوهش، از مدل HYDRUS-2D، برای تحلیل دینامیکی تأثیر استراتژی­های مختلف آبیاری بر تغییرات زمانی و مکانی دمای خاک و عدم­قطعیت­های حاکم در فرآیند شبیه­سازی استفاده شد. داده­های هم­زمان دمای خاک و رطوبت، در شبکه­ی منظمی از سنسورهای هوشمند IDRG SMS T-2 در محدوده­ی ریشه­ی گیاه ذرت تحت تیمارهای آبیاری کامل (FI)، کم­آبیاری معمولی (DI) و آبیاری ناقص ریشه (PRD) در فصل زراعیِ 1389جمع­آوری شد. واسنجی مدل بر اساس داده­های پیوسته قرائت شد طی 10 فرآیند آبیاری در هر تیمار و صحت­سنجی بر اساس تغییرات روزانه­ی دمای خاک صورت گرفت. در ادامه، تحلیل عدم­قطعیت مدل در شبیه­سازی دما بر اساس محاسبه­ی واریانس خطا در بعدهای مکانی و زمانی صورت گرفت. بر اساس معیارهای جذر میانگین مربعات خطا (RMSE) و ضریب کارآیی مدل (EF) در مرحله­ی صحت­سنجی، مدل HYDRUS-2D با دقت بالایی قادر به شبیه­سازی دمای خاک (RMSE=0.02-0.42 oC, EF=0.71-0.92) بوده و کم­ترین و بیش­ترین مقدارِ میانگین RMSE در تخمین رژیم گرمایی خاک به ترتیب در تیمارهای FI و PRD بدست آمد. کم­ترین دامنه­ی عدم­قطعیت مدل در شبیه­سازی دمای خاک در تیمارهای FI، PRD و DI در محدوده­ی عمقی 80-60 سانتی­متری مشاهده شد و مقادیر خطا در این تیمارها به ترتیب در محدوده­های 2/0±6/0، 3/2±9/5 و 2±4/5- درصد قرار داشت. همچنین، بیش­ترین مقادیر آن در تیمارهای FI، PRD و DI به ترتیب در محدوده­های عمقی 40-20، 20-0 و 60-40 سانتی­متری وجود داشت و مقادیرِ آن به ترتیب معادل 5±9، 04/3±6/0- و 3/5±7/13- درصد بود. بر اساس نتایج این پژوهش، اعمال PRD می­تواند با کنترل دماهای آستانه در محدوده­ی 28-9 درجه­ی سانتی­گراد، از تعداد روزهای تنش کاسته و شرایط مطلوب­تری را برای رشد ریشه، به ویژه در محدوده­های عمقی فراتر از 40 سانتی­متری در خاک فرآهم آورد. 

کلیدواژه‌ها


عنوان مقاله [English]

Application of HYDRUS2D for Dynamical Assessment of the Influence of Irrigation Management on Controlling Soil Cardinal Temperatures

نویسنده [English]

  • Fatemeh Karandish
Assistant Professor, Water Engineering Department, University of Zabol., Zabol., Iran
چکیده [English]

Soil cardinal temperatures are one of the affective factors on biological properties of crops and highly affect root growth and consequently, water and nutrient uptake. Since soil water content has a considerable contribution in controlling soil temperature, predicting the probable consequences of applying a specific irrigation strategy may help with selecting a suitable method aiming at increasing water and nutrient use efficiency. Therefore, in this research, HYDRUS2D was applied for dynamical assessment of the influence of different irrigation strategies on the spatial and temporal pattern of soil temperature variations and the projected uncertainties through the simulation approach. Simultaneous soil water content and soil temperature data was collected by using IDRG SMS T-2 sensors installed in maize rooting zone under full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) during 2010 growing season. Simultaneous soil water content and soil temperature data was collected by using IDRG SMS T-2 sensors installed in maize rooting zone. The calibration process was done using the continues data collected after 10 irrigation events in all treatments, and the validation process was carried out using daily variations of soil temperature. Finally, the model uncertainty was assessed by calculating the spatial and temporal error variance. Based on the root mean square error (RMSE) and model efficiency (EF) in the validation process, HYDRUS2D could accurately simulate soil temperature (RMSE=0.02-0.42 oC, EF=0.71-0.92) and the minimum and maximum RMSE in estimation soil thermal regimes was corresponded to FI and PRD treatments, respectively. the lowest uncertainty domain for simulating soil temperature under FI, PRD and DI treatments was observed in 60-80 cm soil depth, and the estimated errors for these treatments were, respectively, 0.6±0.2, 5.9±2.3 and -5.4±2 percentage, respectively. Moreover, the highest uncertainty domain for FI, PRD and DI treatments was corresponded to 20-40 cm, 0-20 cm and 60-80 cm soil depth, respectively, and accounted for 9±5, -0.6±3.04 and -13.7±5.3 percentage, respectively. Based on the results, applying PRD would decrease the number of stress days through controlling soil cardinal temperatures in the domain of 9-28 oC which led to providing a better condition for root growth especially in the soil depths beyond 40 cm. 

کلیدواژه‌ها [English]

  • HYDRUS2D
  • Partial Root-zone Drying
  • Spatial and Temporal Variation of Temperature
  • Uncertainty
Abzhalimov,R.S. 2007. Calculation of the negative-temperature distribution of soils over the depth of frost. Soil. Mechanics and Foundation Engineerig. 44.1: 31-37.
Barber,S.A., Mackey,A.D., Kuchenbuch,R.O and Barraclough,P.B. 1988. Effect of soil temperature and water on maize root growth. Plant Soil. 111: 267-269.
Callejas,R., Pablo Canales,P and Victor Garcia,D.E., Cortazar,G.D.C. 2009. Relationship between root growth of Thompson seedless grapevines and soil temperature. Chillinan Journal of Agricultural Research. 69.4: 496-502.
Chung,S.O., Horton,R. 1987. Soil heat and water flow with a partial surface mulch. Water Resource Researches. 23. 12: 2175-2186.
Dourado-Neto,D., Timm,L.C., Oliveira,J.C.M., Reichardt,K., Bacchi,O.O.S., Tominaga,T,T., Cássaro,F.A.M. 1999. State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola. 56: 1215-1221.
Duna,W and Chen,L. 2010. Spatiotemporal distribution pattern of soil temperature in forest gap in Pinuskoraiensis-dominated broadleaved mixed forest in Xiao Xing’an Mountains, China. 19th World Congress of Soil Science, Soil Solutions for a Changing World.
Feddes,R.A., Kowalik,P.J., Zaradny,H. 1978. Simulation of field water use and crop yield. In: Simulation Monographs. Wageningen : Centre for Agricultural Publishing and Documentation. 189p.
Hlavinka,P., Trnka,M., Balek,J., Zalud,Z., Hayes,M., Svoboda,M and Eitzinger,J. 2009. Modeling of soil water content and soil temperature at selected U.S. and central European stations using Soil Clim model. Geophyscs Research Abstract. 11: EGU2009-11217.
Karandish,F. 2016. Improved soil-plant water dynamics and economic water use efficiency in a maize field under locally water stress. Archive of Agronomy and Soil Sciences. 62.9: 1311-1323.
Karandish,F., Simunek,J. 2016a. A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies. Agricultural Water Management. 178: 291-303.
Karandish,F., Simunek J. 2016b. Numerical and machine-learning modeling of soil water content for sustainable water management in agriculture under water stress, Journal of Hydrology. 543: 892-909.
Karandish,F., Shahnazari,B. 2016. Soil temperature and maize nitrogen uptake improvement under partial root zone drying. Pedosphere. 26.6: 872-886.
Karandish,F., Mousavi,S.S., Tabari,H. 2016. Climate change uncertainty and risk assessment in Iran during 21th century: evapotranspiration and green water deficit analysis. Theoretical and Applied Climatology, DOI: 10.1007/s00704-016-2008-2.
Kasubuchi,T. 1982. Heat conduction of soils. Bull NatlInstAgricSciSer B. (In Japanese). 33: 1-54.
Kozlowski,T.T and Pallardy,S.G. 1997. Physiology of woody plants. Academic Press, San Diego. 2nd edition. ISBN 0-12-424162-X.
Lambers,H., Chapin,F.S and Pons,T.L. 1998. Plant physiological ecology. Springer, New York. ISBN 0-387-98326-0.
Lathi,M., Aphalo,P.J., Finer,L., Ryyppo,A., Lehto,T and Mannerkoski,H. 2005. Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiology. 25: 115-122.
Li,S., Yang,W  and Zhang,X. 2009. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system. Applied Thermal Eng. 29.17-18: 3679-3686.
Nainanayake, A., Ranasinghe, C. S. and Tennakoon, N. A. 2008. Effects of drip irrigation on canopy and soil temperature, leaf gas exchange, flowering and nut setting of mature coconut (Cocosnucifera L.). Journal of National Sciences Foundation of Sri Lanka. 36.1: 43-50.
Nakhaei,M., Simunek,J .2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. Journal of Hydrology and Hydromechanics. 62.1: 7-15.
Psarras,G., Merwin,I.A., Lakso,A.N and Ray,J.A. 2000. Root growth phenology, root longevity and rhizosphere respiration of field grown “Mutsu” apple trees on “Mailing 9” rootstock. Journal of American Society of Horticultural Sciences. 125: 596-602.
Pregitzer,K.S., King,J.S., Burton,A.J and Brown,S.E. 2000. Responses of tree fine roots to temperature. New Phycologist. 147: 105-115.
Roxy,M.S., Sumithranand,V.B andRenuka,G. 2010. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. Journal of Earth System Sciences. 119 .4: 507-517.
Simunek,J., Van Genuchten,M.Th., ejna,M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone Journal, 7(2), 587-600.
Simunek,J., Suarez,D.L. 1993. The UNSATCHEM-2D code for simulating two-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with majorion equilibrium and kinetic chemistry. Version 1.1, Research Report No. 128, U. S. Salinity Laboratory, USDA, ARS, Riverside, California.
Sophocleous,M. 1979. Analysis of water and heat flow in unsaturated-saturated porous media. Water Resource Researches. 15. 5. 1195-1206.
Todd,R.W., Evett,S.R., Howell,T.A and Klocke,N.L. 2000. Soil temperature and water evaporation of small steel and plastic lysimeters replaced daily. Journal of  Soil Sciences. 165 .11: 890-895.
Vrugt,J.A., Hopmans,J.W., Simunek,J. 2001. Calibration of a two-dimensional root water uptake model. Soil Soil Sciences of America Journal. 65 .4: 1027-1037.
Walker,J.M. 1969. One-degree increments in soil temperatures affect maize seeding behavior. Soil Science Society of America Proceeding. 33: 729-736.