نگرشی نوین بر هیدرولوژی کلاسیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ تحصیل دکترای گروه مهندسی آب، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار گروه مهندسی آب، دانشگاه تربیت مدرس، تهران، ایران

3 استاد گروه پژوهشی زیست محیطی خاوران، مشهد، ایران

چکیده

با توجه به افزایش فعالیت­های انسانی در طبیعت و اثرات آن بر محیط زیست و منابع آبی، لزوم تغییر رویکرد در مدل­سازی هیدرولوژی اجتناب­ناپذیر است. برای مدل­سازی بهتر رفتار هیدرولوژیکی حوضه­ها به­ویژه با درنظرگرفتن دخالت انسان در طبیعت، متخصصان هیدرولوژی باید درک درستی از هیدرولوژی، مدل و مدل­سازی داشته باشند. بنا به تعریف، علم هیدرولوژی که رفتار آب را در بالا، رو و داخل زمین توصیف می­کند، یک علم چندبخشی است که ارتباط بین علوم زمین و علوم زیستی را بررسی می­کند. مدل­سازی در هیدرولوژی با دو رویکرد نیوتنی و داروینی انجام می­شود و بر اساس این رویکردها، رویکردهای پایین- بالا و بالا- پایین توسعه یافته­اند. با توجه به مزایا و معایب هر رویکرد، ترکیب این دو رویکرد می­تواند به فهم بهتر سیستم هیدرولوژیکی حوضه­ها و مدل­سازی آن کمک کند. در این مقاله با مرور مطالعات صورت گرفته، به مباحث مطرح شده جدید در زمینه مدل­سازی هیدرولوژی و چالش­های جدید مربوط به آن پرداخته می­شود. بر اساس مطالعات صورت گرفته برای درک بهتر سیستم­های درهم تنیده جفت شده انسان- محیط باید نگرش خود را به علم هیدرولوژی تغییر داده و رویکرد جدیدی در این زمینه اتخاذ شود. پیدایش علوم جدید هیدرولوژی اجتماعی و علم پایداری نشان از نقش غیرقابل انکار انسان در محیط زیست و اهمیت زیاد توسعه پایدار دارد که برای رسیدن به این هدف باید با تغییر سیستم آموزش هیدرولوژی متخصصان جوان هیدرولوژی را برای مدیریت چالش­های جدید مربوط به منابع آبی در جهان در حال تغییر آماده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

A Novel Attitude on Classical Hydrology

نویسندگان [English]

  • Ameneh Mianabadi 1
  • Hojat Mianabadi 2
  • Amin Alizadeh 3
1 Graduated PhD Student., Water Engineering Department, Ferdowsi University of Mashhad., Mashhad., Iran
2 Assistant professor, Water Engineering Department, Tarbiat Modares University., Tehran., Iran
3 Professor, Khavaran Emvironment Research Group, Mashhad., Iran
چکیده [English]

Due to increasing human activities and its impacts on the environment and water resources, a paradigm shift in hydrological modeling is inevitable. For better modeling of basins’ hydrological behavior, especially with considering the human influences, hydrologist should have an appropriate understanding of the hydrology, models and modeling.  By definition, hydrology, which describes the behavior of water above, over and through the Earth, is a multi-disciplinary science which investigates the relationship between the earth and life sciences. There are two approaches for hydrological modeling, Newtonian and Darwinian, based on which the bottom-up and top-down approaches were developed. Considering the pros and cons of each approach, combination of the bottom-up and top-down approaches can help to a better understanding and modeling of the hydrological system of the basins. In this paper, we discuss the novel approach and its challenges in hydrological modeling. Based on the previous studies, we must change our approach to model hydrological systems for a better understanding of the complex coupled human-environmental systems. Emerging the new sciences of socio-hydrology and sustainability science indicates the undeniable role of humans in the environment and the importance of sustainable development. To reach a sustainable development, it is crucial to empower the young hydrologists to cope with the new water resources challenges in a changing world by reframing hydrology education. 

کلیدواژه‌ها [English]

  • Complex systems
  • hydrology education
  • Socio-hydrology
  • Sustainability science
  • sustainable development
ستاد احیای دریاچه ارومیه. 1394. دریاچه ارومیه، علل خشکی و تهدیدات احتمالی. گزارش شماره یک کمیته اجتماعی- فرهنگی ستاد احیای دریاچه ارومیه. 37 صفحه.
کمالی،م.، یونس­زاده جلیلی،س. 1394. بررسی تغییرات کاربری اراضی حوضه آبریز دریاچه ارومیه با استفاده از تصاویر ماهواره­ای. مرکز تحقیقات سنجش از دور، دانشگاه صنعتی شریف. دفتر برنامه­ریزی و تلفیق ستاد احیای دریاچه ارومیه. 71 صفحه.
AghaKouchak,A., Norouzi,H., Madani,K., Mirchi,A., Azarderakhsh,M., Nazemi,A., Nasrollahi,N., Farahmand,A., Mehran,A., Hasanzadeh,E. 2015. Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research. 41.1:307-311.
Amery,H.A. 2002. Water Wars in the Middle East: A Looming Threat. The Geographical Journal. 168.4:313-323.
Berry, S., Farquhar, L.G.D. and Roderick, M. 2005. Co-evolution of climate, soil and vegetation. Editor: M. Anderson, . Encyclopedia of Hydrological Sciences. London: John Wiley, p. 3456.
Beven,K. 1989. Changing ideas in hydrology - The case of physically-based models. Journal of Hydrology. 105.1-2:157-172.
Beven,K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences. 5.1:1-12.
Blschl,G and Sivapalan,M. 1995. Scale issues in hydrological modelling: A review. Hydrological Processes. 9:251-290.
Budyko,M.I. 1974. Climate and life, Orlando, Fla: Academic Press. San Diego. California. 508.
Chen,X., Alimohammadi,N and Wang,D. 2013. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research. 49.9:6067-6078.
Choudhury,B. 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology. 216.1-2:99-110.
Clark,W.C. 2007. Sustainability Science: A room of its own. Proceedings of the National Academy of Sciences, 104.6:1737-1738.
Du,C., Sun,F., Yu,J., Liu,X and Chen,Y. 2016. New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions. Hydrology and Earth System Sciences. 20.1:393-409.
Eagleson,P.S. 1978. Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration. Water Resources Research. 14.5:731-739.
Eagleson,P.S. 1982. Ecological optimality in water-limited natural soil-vegetation systems: 1. Theory and hypothesis. Water Resources Research. 18.2:325-340.
Ellis,E.C. 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369.1938:1010-1035.
Fathian,F., Morid,S., Kahya,E. 2014. Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology. 119.3-4:443-464.
Fenicia,F., Savenije,H.H.G., Matgen,P and Pfister,L. 2008. Understanding catchment behavior through stepwise model concept improvement. Water Resources Research. 44.1:1-13.
Freeze,R.A and Harlan,R.L. 1969. Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology. 9.3:237-258.
Grayson,R.B., Moore,I.D and McMahon,T.A. 1992. Physically based hydrologic modeling: 2. Is the concept realistic? Water Resources Research. 28.10:2659-2666.
Greve,P., Gudmundsson,L., Orlowsky,B and Seneviratne,S.I. 2016. A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences. 20.6:2195-2205.
Hamzekhani,F.G., Saghafian,B., Araghinejad,S. 2016. Environmental management in Urmia Lake: thresholds approach. Internal Journal of Water Resources Development. 32.1: 77-88.
Han,S., Hu,H., Yang,D and Liu,Q. 2011. Irrigation impact on annual water balance of the oases in Tarim Basin, Northwest China. Hydrological Processes. 25.2:167-174.
Harman,C and Troch,P.A. 2014. What makes Darwinian hydrology darwinian? Asking a different kind of question about landscapes. Hydrology and Earth System Sciences. 18.2:417-433.
Harte,J. 2002. Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today. 55.10:29-34.
Hassanzadeh,E., Zarghami,M., Hassanzadeh,Y. 2012. Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling. Water Resources Management. 26.1:129-145.
Heylighen,F., Joslyn,C. 1995. Systems theory. In R. Audi, ed. Cambridge Dictionary of Philosophy. Cambridge: Cambridge University Press, p. 1001.
Iran Ministry of Energy, Deputy of Water and Wastewater, Macro Planning Bureau. 2014. The National Water Master Plan Study in the Aras, Sefidrood, between Sefidrood and Haraz, Atrac and Urmia Basins. Volume 19: Agricultural Development for 2040 Horizon. Report number: 3385070-250.
Jalili,S., Hamidi,S.A., Ghanbari,R.N. 2016. Climate variability and anthropogenic effects on Lake Urmia water level fluctuations. northwestern Iran. Hydrological Sciences Journal.6667:1-11.
Jarvis,P.G. 1993. Prospects for bottom-up models. In Scaling Physiological Processes: Leaf to Globe. California: Academic Press, p. 388.
King,E.G., O Donnell,F.C and Caylor,K.K. 2012. Reframing hydrology education to solve coupled human and environmental problems. Hydrology and Earth System Sciences. 16.11:4023-4031.
Kinzelbach,W. 2008. Hydrological science and engineering: the yin and yang of water resources management. Geophysical Research Abstracts. 10. p.EGU2008-A-10943.
Kleme,V. 1983. Conceptualization and scale in hydrology. Journal of Hydrology. 65.1-3:1-23.
Koutsoyiannis,D. 2011. Scale of water resources development and sustainability: small is beautiful, large is great. Hydrological Sciences Journal. 56.4:553-575.
Lane,S.N. 2013. Acting, predicting and intervening in a socio-hydrological world. Hydrology and Earth System Sciences Discussions. 10.8:10659-10717.
Levy,M. C., Garcia,M., Blair,P., Chen,X., Gomes,S.L. Gower,D.B., Grames,J., Kuil,L., Liu,Y. Marston,L., McCord,P.F., Roobavannan,M and Zeng,R. 2016. Wicked but worth it: student perspectives on socio-hydrology. Hydrological Processes. 30.9:1467-1472.
Littlewood,I.G., Croke,B.F.W., Jakeman,A.J and Sivapalan,M. 2003. The role of top-down modelling for Prediction in Ungauged Basins (PUB). Hydrological Processes. 17:1673-1679.
Madani,K. 2014. Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies andSciences. 4.4:315-328.
Mianabadi,H., Mostert,E and Van de Giesen,N. 2013. Glocal transboundary river basins management. In NCR-DAYS 2013 Conference, 3-4 October. pp. 5-6.
Milly,P.C.D. 1993. An analytic solution of the stochastic storage problem applicable to soil water. Water Resources Research. 29.11:3755-3758.
Milly,P.C.D. 1994. Climate, soil water storage, and the average annual water balance. Water Resources Research, 30.7:2143-2156.
Milly,P.C.D., Betancourt,J., Falkenmark,M., Hirsch,R.M., Kundzewicz,Z.W., Lettenmaier,D.P and Stouffer,R.J. 2008. Stationarity Is Dead: Whither Water Management? Science. 319.5863:573-574.
Molden,D., Frenken,K., Barker,R., De Fraiture,C., Mati,B., Svendsen,M., Sadoff,C and Finlayson,C. 2007. Trends in water and agricultural development. In D. Molden, ed. Water for food, water for life: a comprehensive assessment of water management in agriculture. Colombo, Sri Lanka: Earthscan, London, UK and International Water Management Institute, p. 645.
Oki,T and Kanae,S. 2006. Global Hydrological Cycles and World Water Resources. Science. 313.5790:1068-1072.
Ol’dekop,E.M. 1911. On evaporation from the surface of river basins. Transactionson Meteorological Observations, 4, p.200.
Peel, M.C and Bloschl,G. 2011. Hydrological modelling in a changing world. Progress in Physical Geography. 35.2:249-261.
Pike,J.G. 1964. The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology. 2.:116-123.
Postel,S.L. 2011. Foreword—Sharing the benefits of water. Hydrological Sciences Journal. 56.4:529-530.
Qi,C and Grunwald,S. 2005. GIS-based hydrologic modeling in the Sandusky watershed using SWAT. Transactions of the ASAE. 48.1:169-180.
Refsgaard,J.C. 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology. 198.1-4:69-97.
Refsgaard,J.C. 1990. Terminology, Modelling Protocol And Classification of Hydrological Model Codes. In Distributed hydrological modelling. pp. 17-39.
Rodriguez-Iturbe,I. 2000. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resources Research. 36.1:3-9.
Savenije,H.H.G. 2009. The art of hydrology. Hydrology and Earth System Sciences. 13:157-161.
Savenije,H.H.G., Hoekstra,A.Y and van der Zaag,P. 2013. Evolving water science in the Anthropocene. Hydrology and Earth System Sciences Discussions. 10.6:7619-7649.
Schreiber,P. 1904. About the relationship between the precipitation and the water management of the river in Central Europe. Meteorology. 21.10:441- 452.
Sivapalan,M., Bloschl,G., Zhang,L., Vertessy,R. 2003. Downward approach to hydrological prediction. Hydrological Processes. 17.11:2101–2111.
Sivapalan,M., Savenije,H.H.G and Blöschl,G. 2012. Socio-hydrology: A new science of people and water. Hydrological Processes. 26.8:1270-1276.
Thompson,S.E., Sivapalan,M., Harman,C.J., Srinivasan,V., Hipsey,M. R., Reed,P., Montanari,A and Blöschl,G. 2013. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences Discussions. 10.6:7897-7961.
Troy,T.J., Konar,M., Srinivasan,V and Thompson,S. 2015. Moving sociohydrology forward: a synthesis across studies. Hydrology and Earth System Sciences Discussions. 12.3:3319-3348.
Turc,L. 1954. The water balance of the soil. Relationship between precipitation, evaporation and runoff. Annals of Agronomy. 5:491- 569.
Viglione,A., Di Baldassarre,G., Brandimarte,L., Kuil,L., Carr,G., Salinas,J.L., Scolobig,A and Blöschl,G. 2014. Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust. Journal of Hydrology. 518:71-82.
Vogel,R.M., Lall,U., Cai,X., Rajagopalan,B., Weiskel,P.K., Hooper.R.P and Matalas,N.C. 2015. Hydrology: The interdisciplinary science of water. Water Resources Research. 51.6:4409-4430.
Von Bertalanffy,L. 1968. General system theory: Foundations, development, applications, New York: George Braziller Inc.
Vorosmarty,C.J., Green,P., Salisbury,J and Lammers,R.B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science. 289.5477:284-288.
Wagener,T., Sivapalan,M., Troch,P.A., McGlynn,B.L., Harman,C.J., Gupta,H.V., Kumar,P., Rao,P.S.C., Basu,N.B and Wilson,J.S. 2010. The future of hydrology: An evolving science for a changing world. Water Resources Research. 46.5:1-10.
Wang,D and Alimohammadi,N. 2012. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resources Research. 48.5:1-16.
Wang,D and Tang,Y. 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophysical Research Letters. 41.13:4569-4577.
Wang,X and Zhou,Y. 2016. Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration. Hydrology and Earth System Sciences. 20.9:3673-3690.
Wolski,P., Savenije,H.H.G., Murray-Hudson,M and Gumbricht,T. 2006. Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model. Journal of Hydrology. 331.1-2:58-72.
Zedler,J.B and Kercher,S. 2005. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources. 30.1:39-74.
Zhang,D., Cong,Z., Ni,G., Yang,D and Hu,S. 2015. Effects of snow ratio on annual runoff within the Budyko framework. Hydrology and Earth System Sciences. 19.4:1977-1992.
Zhang,L., Dawes,W.R and Walker,G.R. 2001. Response of Mean Annual Evapotranspiration to Vegetationchanges at Catchment Scale. Water Resources.37.3:701-708.