Experimental Investigation of Energy Dissipation and Hydraulic Jump Length in Rough bed Condition With Cubic Blocks Downstream Sluice gate

Document Type : Original Article

Authors

1 M.Sc. Student, Department. of Water Engineerin., Sari Agricultural Sciences and Natural Resources University., Sari., Iran

2 Associate Prof., Department. of Water Engineering, Sari Agricultural Sciences and Natural Resources University., Sari., Iran

Abstract

Energy dissipation structures are device to control of hydraulic jump, in addition to dissipation of water energy. In this research, experimental investigation the effect of cubic roughness was done with staggered and strip arrangements in different angles and rows on jump length and energy dissipation. For this purpose, in laboratory model used from flume with length of 12, width of 0.5 and height 0.7 meters and rough beds placed in downstream of sharp sluice gate. Experiments was performed for Froude number between 4.5 to 9. The results showed staggered arrangement produced better performance compare to strip arrangement in terms of decreasing relative length, moreover, value showed 49 percent, so that percent of decreasing hydraulic jump length for tested rough beds in compare with smooth bed calculated in range of 46 to 54 percent for staggered arrangement and 37 to 46 percent in strip arrangement. Jump relative length ( ) increases for staggered arrangement with increasing Froude number and for strip arrangement the variation of  in high Froude number are independent of Froude numbers. The percent of increasing hydraulic jump energy dissipation rate was in range of 19 to 31 for staggered arrangement and 20 to 34 percent in strip arrangement.

Keywords


بدیع‏زادگان،ر.، صانعی،م  و اسماعیلی،ع. 1393. مقایسه مشخصات پرش هیدرولیکی روی انواع بسترهای زبر موج‏دار. نشریه آبیاری و زهکشی ایران. 8. 2: 232-220.
بیرامی،م.ک. 1390. سازه‏های انتقال آب. دانشگاه صنعتی اصفهان، 462 ص.
پارسامهر،پ.، حسین‏زاده‏دلیر،ع.، فرسادی‏زاده،د و عباسپور،ا. 1391. پرش هیدرولیکی بر روی بستر با زبری‏های نیم‏استوانه‏ای شکل. نشریه آب و خاک (علوم و صنایع کشاورزی). 26. 3: 785-775.
حسینی،م و ابریشمی،ج. 1390. هیدرولیک کانال‏های باز. دانشگاه امام رضا، مشهد، 612 ص.
راور،ز.، فرهودی،ج و نژندعلی،ع. 1391. تاثیر بستر زبر ذوزنقه‏ای قایم بر خصوصیات پرش هیدرولیکی و استهلاک انرژی. نشریه آب و خاک (علوم و صنایع کشاورزی)، دانشگاه فردوسی مشهد. 26. 85:94-1.
شکریان،م و شفاعی بجستان،م. 1393. اثر ارتفاع زبری بستر تندآب بر خصوصیات پرش نوع B. نشریه آب و خاک. 24 . 2: 226-215.
غزالی،م.، صمدی‏بروجنی،ح.، قربانی،ب و فتاحی نافچی،ر. 1389. تأثیر بستر موج‏دار مثلثی بر مشخصات پرش هیدرولیکی. مجله پژوهش آب ایران. 7: 107-99.
نژندعلی،ع.، اسماعیلی،ک و فرهودی،ج. 1391. اثر فاصله زبری‏های مثلثی بستر بر ویژگی‏های پرش هیدرولیکی. نشریه آب و خاک (علوم و صنایع کشاورزی)، دانشگاه فردوسی مشهد.26. 2: 289-282.
مردانی،م.، رحیم‏زاده،ح و سرکرده،ح. 1394. تحلیل و بررسی استفاده از بلوک بر عملکرد حوضچه‏های آرامش. مجله مهندسی مکانیک مدرس. دوره 15. 6: 41-31.
مومنی،م و فعال­قیومی،ع. 1386. تحلیل‏های آماری با استفاده از SPSS. نشر کتاب نو. چاپ اول. 302 ص.
Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh, D. and Sadraddini, A.A. 2009. Effect of Sinusoidal Corrugated Bed on Hydraulic Jump Characteristics. Journal of Hydro-environment Research 3:109-117.
Bradley, J.N. and Peterka, A.J. 1957. The Hydraulic Design of Stilling Basin. ASCE Journal of Hydraulics Division, 83(HY5): 1401-1406.
Carollo, F.G., Ferro,V. and Pampalone, V. 2007. Hydraulic Jumps on Rough Beds. Journal of Hydraulic Engineering, 133.9: 989-999.
Chern, M.J and Syamsuri, S. 2013. Effect of Corrugated Bed on Hydraulic Jump Characteristic Using SPH Method. Journal of Hydraulic Engineering.139.2: 221-232.
Ead, S.A. and Rajaratnam, N. 2002. Hydraulic Jump on Corrugated Beds. Journal of Hydraulic Engineering, ASCE, 128.7: 656-663.
Elnikhely, E.A. 2014. Effect of Staggered Roughness Elements on Flow Characteristics in Rectangular Channel. IJRE: International Journal of Research in Engineering and Technology. Volume: 03 Issue: 08. 12 pp.
Hager, W.H. and Bremen, R. 1989. Classical Hydraulic Jump; Sequent Depths. Journal of Hydraulic Research. 27.5: 565–585.
Hager, W.H., Bremen, R. and Kawagowshi, N. 1990. Classical hydraulic jump: Length of roller. Journal Hydraulic Res., 28.5: 591-608.
Izadjoo, F. and Shafai Bajestan, M. 2007. Corrugated Bed Hydraulic Jump Stilling Basin. Journal of Applied Sciences, 7.8: 1164-1169.
Peterka, A.J. 1978. Hydraulic Design of Stilling Basins and Energy Dissipater. United States Department of the Interior, Bureau of Reclamation, Washington. 240 pp.
Rajaratnam, N. 1965. The Hydraulic Jump as a Wall Jet, Journal of the Hydraulics Division. 91.5: 107–132.
Rajaratnam, N. 1968. Hydraulic Jump on Rough Bed. Transaction of the EngineeringInstitute of Canada. 11.2:1-8.
Rajaratnam, N. 1976. Turbulent Jets. Elsevier Scientific Publishing Company, Amsterdam, the Netherlands, 303 pp.
Samadi Boroujeni, H., Ghazali, M., Gorbani, B and Fattahi Nafchi, R. 2013. Effect of Triangular Corrugated Beds on the Hydraulic Jump Characteristics. Canadian Journal of Civil Engineering. 40: 841-847.
Tokyay, N.D. 2005. Effect of Channel Bed Corrugations on Hydraulic Jumps. Water & Environmental Resources Congress, Anchorage, Alaska, USA, 8 pp.
USBR. 1955. Hydraulic Design of Stilling Basins and Energy Dissipater.