تعیین پارامترهای تاثیرگذار بر ضریب دبی سرریزهای اوجی قوس محور با استفاده از روش ماشین بردار پشتیبان(SVM) و مقایسه با روش شبکه فازی- عصبی تطبیقی(ANFIS)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 دانشجوی دکترای عمران (سازه‌های هیدرولیکی) دانشگاه تبریز، تبریز، ایران

3 دانشیار گروه مهندسی رودخانه و سواحل، پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران

چکیده

الگوی سه­بعدی جریان در سرریزهای اوجی و نامحدود بودن تغییرات پارامترهای هندسی به­مانند تصحیح جزیی در شکل تاج یا تغییرات سازه‌ای از یک سو و محدودیت اطلاعات قابل دسترس در مورد هیدرولیک سرریزهای اوجی قوس محور از سوی دیگر، به­عنوان چالشی بزرگ، باعث گردیده تا به کارگیری سیستم­های فرامدل و داده­گرا مورد توجه محققان قرار گیرد. در تحقیق کنونی پیش­بینی ضریب دبی با استفاده از داده­های آزمایشگاهی و بکارگیری روش‌های هوش مصنوعی (ماشین بردار پشتیبان SVM و سیستم استنتاج تطبیقی عصبی- فازی ANFIS) انجام شد. بدین منظور از داده­های مدل آزمایشگاهی از این سرریز با چندین زاویه همگرایی دیواره­های هادی  (ساخته شده توسط نگارندگان) استفاده و به ازای مدل­های مختلف، مورد ارزیابی قرار گرفت. نتایج حاصله نشان داد که نسبت هد طراحی به عمق بحرانی ( ) بیش­ترین تاثیر را در تخمین ضریب دبی در مدل برتر و پارامترهای هد بالادست به هد طراحی ( ) و هد بالادست به ارتفاع سرریز ( )تاثیر تقریبا یکسان و کم­تری را در این مدل دارا می­باشند. همچنین نتایج عملکرد مناسب روش­های SVM و ANFIS را تایید می­نماید بطوری­که در ﺑﻬﺘﺮﻳﻦ ﺣﺎﻟﺖ ارزﻳﺎﺑﻲ آزﻣﻮن، در روش SVM مقادیر 966/0 ,R=93/0  DC=و 06/0=RMSE و ﺑﺮای روش ANFIS مقادیر945/0R=، 885/0DC= و088/0 =RMSE ﻣﺸﺎﻫﺪه ﮔﺮدﻳﺪ.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Discharge Coefficient for Ogee Spillway with Curve Axis Using Support Vector Machine by Comparison with Adaptive Neuro Fuzzy Inference System

نویسندگان [English]

  • Kayumars Roushangar 1
  • Ali Foroudi Khowr 2
  • Mojtaba Saneie 3
1 Associate Professor, Hydraulic Structures., Academics staff of Faculty of Civil Eng.,Univ. of Tabriz., Tabriz., Iran
2 Ph.D. Candidate, Faculty of Civil Eng., University. of Tabriz., Tabriz.,Iran
3 Associate Professor, Hydraulic Structures., Soil Conservation and Watershed Management Research Institute (SCWMRI)., Tehran., Iran
چکیده [English]

Three-dimensional pattern of flow on ogee spillway and unlimited geometric parameters changing like a change in crest shape, or modification of the approach channel owing to positional geometric qualities may change the flow characteristics on the one hand and the limited information available about hydraulic ogee spillway with curve axis on the other hand, as a major challenge, has led to the use of meta-model systems and data-oriented used by researchers. In current study Artificial Intelligence Techniques (Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM)) were applied to predict the discharge coefficient of the ogee spillway with curve axis and compared to experimental data. For this purpose, the experimental data of the ogee spillway model with varying training wall convergence angles,  , (which was made by the author) was used and regarding the different models based on the concepts of ogee spillway, examined and evaluated. The obtained results indicated that in estimating the discharge coefficient of the ogee spillway with curve axis, artificial intelligence techniques are very accurate and they show good agreement between observed and predicted values. According to the obtained results of sensitivity analysis it was observed that the ratio of the design head to critical depth ( ) have the highest impact on predicting of discharge coefficient and also the ratio of the total upstream water head to design head ( ) and the ratio of the total upstream water head to spillway height ( ) have the same and marginal impact on this term. The best evaluation of test series were observed in SVM approach with the values of R=0.966, DC=0.93, RMSE=0.06 and in ANFIS approach with the values of R=0.945, DC =0.885, RMSE=0.088, which demonstrates the high accuracy of predictions.

کلیدواژه‌ها [English]

  • ANFIS
  • Converging training walls
  • Discharge coefficient
  • ogee spillway
  • SVM

شفاعی بجستانی،م. 1393. مفاهیم پایه و برنامه­های کاربردی مدل­های فیزیکی و هیدرولیکی. انتشارات دانشگاه شهید چمران، اهواز.

ظهیری،ع. 1394. استخراج رابطه ضریب دبی در سرریزهای قوسی به کمک شبکه برنامه­ریزی ژنتیک، نشریه آبیاری و زهکشی ایران. 9، 2: 323-334

عباس­پور،ا و ارونقی،ه. 1390. پیش­بینی جریان بر روی سرریز مرکب مثلثی- مستطیلی با استفاده از برنامه­ریزی ژنتیک. دهمین کنفرانس هیدرولیک ایران- آبان ماه.

کیا،س،م. 1393. محاسبات نرم در MATLAB. انتشارات دانشگاهی کیان، تهران.

نیک­صفت،غ. 1380. جنبه­های تئوری و کاربرد مدل­های هیدرولیکی در طراحی سازه­های هیدرولیکی. کمیته ملی سدهای بزرگ ایران.

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. I: Preliminary concepts. Journal of Hydrologic Engineering. ASCE. 5.2: 115-123

Juma,I.A., Hussein,H.H and AL-Sarraj,M. 2014.  Analysis of hydraulic characteristics for hollow semi-circular weirs using artificial neural networks. Flow easurement and Instrumentation 38:49–53.

Jang,J.R. 1993. ANFIS: Adaptive Network-Based Fuzzy Inference System, IEEE transactions on systems, man, and cybernetics. 23: 665-685.

Kumar,S., Ahmad,Z and Mansoor,T. 2011. A new approach to improve the discharging capacity of sharp crested triangular plan form weirs. Journal of Flow Measurement and Instrumentation. 22: 175–180”.

Kumar,S., Ahmad,Z., Mansoor,T and Himanshu,S.K. 2012. Discharge Characteristics of Sharp Crested Weir of Curved Plan-form. Research Journal of Engineering Sciences. 1.4: 16-20

Peterka.,A.J. 1953. The effect of entrained air on cavitation pitting[C]. In Proceedings: Minnesota International Hydraulic Convention (pp. 507-518). ASCE.

Roushangar,K., Akhgar,S., Salmasi,F and Shiri,J. 2014. Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology. 508:254–265.

Vapnik,V.N. 1995. The Nature of Statistical Learning Theory, Springer, New York.