مقایسه سامانه استنتاج فازی- عصبی تطبیقی (ANFIS)وسامانه ماشین بردار پشتیبان(SVM) در تخمین میزان ضریب دبی سرریزهای لبه‌تیز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای عمران(سازه‌های هیدرولیکی) دانشگاه تبریز

2 دانشیار گروه مهندسی رودخانه و سواحل، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی

3 دانشیار دانشکده عمران دانشگاه سیستان و بلوچستان

چکیده

دراین تحقیق به کمک سامانه استنتاج فازی- عصبی تطبیقی و همچنین روش ماشین بردار پشتیبان مدل­هایی بدون بعد برای برآورد ضریب دبی در سرریزهای لبه تیز قوس محور ارایه شده است. برای واسنجی و صحت­سنجی (آزمون) رابطه پیشنهادی، داده­های آزمایشگاهی کومار-همکاران  (Kumar et al., 2012)استفاده گردید و برآورد ضریب دبی از روش­های ANFIS و SVM با مدل تجربی آن­ها و همچنین مدل­سازی برنامه­ریزی ژنتیک ظهیری مقایسه شد. نتایج محاسباتی نشان داد که مدل­های پیشنهادی از دقت بسیار مناسبی برخوردار می­باشند. همچنین نتایج برتر مدل­های مذکور متناسب با بار آبی بالادست، ارتفاع سررریز و زاویه انحنای قوس محوری، حاکی از برقراری ارتباط مستقیم میزان ضریب دبی این نوع سرریز با مشخصات جریان است و این در حالی است که در تحقیق حاضر در مدل­سازی باANFIS  الگوی ورودی با روش آموزش هیبریدی و تابع عضویت گوسین دو نقطه­ای با دارا بودن بیش­ترین ضریب تعیین 993/0  DC= نتایج دقیق­تری را نسبت به روش SVM با الگوی ورودی تابع گوسی (RBF) و مقادیر γ، c و ε به­ترتیب برابر 3، 10 و 1/0 با داشتن 98/0  DC= ارایه می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Support Vector Machines(SVM) for discharge capacity prediction of a sharp-crested weirs

نویسندگان [English]

  • Ali Foroudi Khowr 1
  • Mojtaba Saneie 2
  • Mahdi Azhdari Moghaddam 3
1 Ph.D. Candidate, Faculty of Civil Eng., Univ. of Tabriz, Iran. ring
2 Associate Professor, Hydraulic Structures., Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran.
3 Associate Professor, Hydraulic Structures, Academic staff of Faculty of Civil Eng.,Univ. of Sistan and Baluchestan, Iran
چکیده [English]

The aim of this study is to apply different methods to investigation the discharging capacity of a sharp-crested curved plan-form weirs through the Adaptive neuro fuzzy inference system (ANFIS) and Support Vector Machines (SVM) techniques. Subsequently, For training and testing of the proposed equation, experimental data of Kumar et al, have been used and prediction of discharge coefficient through the ANFIS and SVM were compared with equations were proposed with Kumar et al and Zahiri. The result showe that proposed artificial inteligince models have sutable accuracy and also result of superior models is related to total upstream head, spillway height and the angle of curvature of axis curve which demonstrate direct relationship between discharge coefficient and hydraulic properties. Moreover, the performance of ANFIS model is a bit better than SVM technique with relatively low error and high correlation values. Determination coefficient of the proposed equation for discharge coefficient have been calculated as 0.993 for the ANFIS model with Hybrid training method and two point Gaussian membership function, Also this parameter calculated for SVM  with RBF Kernel type and  with having values include 3, 10 and 0.1 that is related to γ,c and ε respectively  as 0.98 for testing phases

کلیدواژه‌ها [English]

  • Artificial Intelligence Models
  • Curveture angle
  • Discharge Capacity
  • Sharp crested Weir

ظهیری،ع. 1394. استخراج رابطه ضریب دبی در سرریزهای قوسی به کمک شبکه برنامه­ریزی ژنتیک، نشریه آبیاری و زهکشی ایران. 2.9: 323-334.

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial Neural Networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering. ASCE. 5.2: 115-123.

Asthana,K.C., Syed Tahir,H and Syed,Y. 1961. Flow over curved weirs. Water and Energy International. 18.8: 744-761.

Chen,Q., Dai,G., Liu,H. 2002. Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow. Journal of hydraulic engineering.  128.7:683-688.

Cortes,C and Vapnik,V. 1995. Support-vector networks, Machine Learning. 20.3: 273.

Jang,J.S.R. 1993. ANFIS: Adaptive-Network Based fuzzy inference system. IEEE Tran's system, Man, Cybernetic. 23.3: 665-685.

Khan,M.S and Coulibaly,P. 2006. Application of Support Vector Machine in ake Water Level Prediction. Journal of Hydrologic Engineering. 11.3: 199-205.

Kindsvater,C.E and Carter,R.W. 1959. Discharge characteristics of rectangular thin-plate weirs.   Transactions, American Society of Civil Engineers. 124.1:772-801.

Kisi,O. 2007. The potential of different ANN techniques in evapotranspiration modeling. Journal of Hydrological Process. 22.14: 2449-2460.

Kumar,S., Ahmad,Z., Mansoor,T., Himanshu,S.K. 2012. Discharge Characteristics of Sharp Crested Weir of Curved Plan-form. Research Journal of Engineering Sciences. 1.4: 16-20.

Lee,W and Hoops,J.A. 1996. Prediction of Cavitation Damage for Spillways. Journal of Hydraulic Engineering. 122.9: 481-488.

Liong,S.Y., Gautam,T.R., Khu,S.T., Babovic,V., Keijzer,M., Muttil,N. 2002. Genetic programming, A new paradigm in rainfall runoff modeling. JAWRA Journal of the American Water Resources Association. 38.3: 705-718.

Lohani,A.K., Goel,N.K and Bhatia,K.K.S. 2007 Deriving stage–discharge–sediment concentration relationships using fuzzy logic. Hydrological Sciences Journal.52.4:793-807.

Nourani,V., Kisi,O., Komasi,M. 2011. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. Journal of Hydrology. 402.1-2:41-59.

Roushangar,K and Alizadeh,F. 2015. Suitability of different modelling strategies in predicting of solid load discharge of an alluvial river. 36th world congress of IAHR. 1-10.

Roushangar,K., Vojoudi,F and Shiri,J. 2014. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). Journal of Hydrology. 514: 114-122.

Saneie,M., SheikhKazemi,J., Azhdary Moghaddam,M. 2016. Scale Effects on the Discharge Coefficient of Ogee Spillway with an Arc in Plan and Converging Training Walls, Civil Engineering Infrastructures Journal. 49.2: 361-374

Swamee,P.K., Shekhar,C.H., Talib,M. 2011. Discharge characteristics of skew weirs” Journal of Hydraulic Research. 49.6: 818-820.