کمی کردن تنش ناشی از فعالیت‌های انسانی بر منابع آب زیرزمینی حوضه آبریز کرخه

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استادیار، گروه آمار، دانشکده علوم ریاضی و آمار، دانشگاه فردوسی مشهد

6 دانشیار پژوهش، موسسه تحقیقات فنی و مهندسی کشاورزی‌، کرج، ایران

چکیده

در دهه­های اخیر، افزایش چشم­گیر جمعیت و به تبع آن گسترش فعالیت­های اقتصادی، صنعتی و تغییر کاربری اراضی، منجر به اثرات گسترده بر امنیت منابع آب شده و مشکلات زیست- محیطی فراوانی را در نقاط مختلف جهان به وجود آورده است. به منظور مدیریت منابع آب به شیوه­ی پایدار، کمی کردن میزان تاثیر فعالیت­های انسانی بر موجودیت منابع آب به جهت کنترل عرضه و تقاضا، افزایش امنیت غذایی ضروری به نظر می­رسد. مطالعه حاضر با این هدف و به منظور ارایه یک شاخص ساده و کاربردی بر اساس پارامترهای معادله بیلان آب آبخوان، انجام شد. این شاخص بر پایه حجم مقادیر ورودی (hin) و خروجی (hout) انسانی به/یا از آبخوان و برای چهار رژیم مصرف آب شامل رژیم با حاکمیت طبیعی، رژیم با حاکمیت انسان، رژیم با زیادی آب و رژیم با کمبود آب تعریف شده است. پس از مشخص شدن وضعیت آبخوان­های حوضه بر اساس این روش و نیز محاسبه میزان اضافه برداشت آب در هریک از آبخوان­ها، به منظور بررسی امکان جابجایی مناطقی که رژیم کمبود آب را تجربه کرده­اند به منطقه با مصرف طبیعی آب، دو سناریوی سازگاری، تعریف و به کار گرفته شد. نتایج نشان داد که %50 از آبخوان­های حوضه کرخه در دوره مورد مطالعه به شدت تحت تاثیر فعالیت­های انسانی بوده­اند. بیش­ترین مقدار برداشت انسانی (471 میلی­متر بر سال) حوضه و در واقع حداکثر اضافه برداشت نسبت به ورودی طبیعی، مربوط به آبخوان اسدآباد بوده است. بر اساس دو سناریوی سازگاری در نظر گرفته شده، با کاهش 10 تا 30 درصدی فعالیت­های انسانی، حرکت از منطقه کمبود آب به منطقه با مصرف طبیعی آب را می­توان در بسیاری از آبخوان­های این حوضه انتظار داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Quantifying Stress of Human Activities on Availability of Groundwater Resources of Karkheh River Basin

نویسندگان [English]

  • batoul ashraf 1
  • amin alizadeh 2
  • mohammad Mousavi-Baygi 3
  • Mohammad Bannayan 4
  • mahdi JabbariNoghabi 5
  • Hossein Dehghanisanij 6
1 Ph.D student of Agrometeorology, Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Water Engineering Department, Ferdowsi University of Mashhad
3 Professor, Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
4 Professor, Agronomy and Plant Breeding Department, Faculty of Agriculture, Ferdowsi University of Mashhad
5 Assistant Professor, Department of Statistic, Faculty of Mathematics and Statistics Science, Ferdowsi University of Mashhad
6 Associate Researcher, Agricultural Engineering Research Institute, Karaj, Alborz, Iran
چکیده [English]

In recent decades, dramatic global population growth along with other related factors such as economic and industrial development, land use/cover change has contributed to an overall effects on water security and environmental problems around the world. To sustainable water management, quantifying the impacts of human activities on local hydrological cycle and water yield is essential in order to control balance between water demand and supply and increasing water security. This paper aims to offer a better characterization of human activities on groundwater stress and sustainability. Herein, we presented an approach for evaluation of water budget to facilitate understanding of the entire flow system of the aquifer in order to inform sustainable water resources management. We used a simple approach for quantifying direct human-hydrologic interactions by analyzing the aquifers’ water budget including human withdrawals (Hout) and return flows (Hin) according to water-balance equation and then normalized them relative to the net flux (Net Flux). Based on the normalized values of human inflow and outflow, the water-use regimes can be classified as surcharged (S), depleted (D), natural-flow dominated (Nf), and human-flow dominated (Hf). In addition we determine groundwater overdraft as a ratio between human withdrawals (Hout) and Recharge (RT) in order to evaluate the flow condition relative to the human water use. Finally we considered two adaptation scenarios to investigate probability of shift of aquifers that are located to depleted regime area to natural-flow dominated area. The results show that half of the studied aquifers in the Karkheh River Basin are of natural-flow dominated type while the rest are depleted. The Asadabad aquifer shows the highest amount (471 mm/yr) of human withdrawals (Hout) in this basin; actually highest overdraft relative to natural recharge to aquifer. Based on investigation of adaption scenarios, we explored that considering adaptation scenarios and decreasing human activities between 10 to 30 percent can be very useful for some aquifers in this basin.

کلیدواژه‌ها [English]

  • aquifer
  • Return flow
  • Anthropogenic stress
  • water overdraft
  • Food Security
پورحقی،ا.، آخوندعلی،ع.، رادمنش،ف و میرزایی،ی. ۱۳۹۳. مدیریت بهره‌برداری از منابع آب زیرزمینی در شرایط خشکسالی با مدل MODFLOW . علوم و مهندسی آبیاری. ۳۷. ۲: ۷۱-۸۲.
جنوبی،ر.، رضایی،ح و بهمنش،ج. ۱۳۹۲. مدیریت سطح آب زیرزمینی از طریق تلفیق آب سطحی و زیر سطحی با استفاده از مدل MODFLOW . مدیریت آب و آبیاری. ۴. ۳: ۴۹-۶۸.
کتیبه،ه و حافظی،س. ۱۳۸۳. به­کارگیری مدل MODFLOW در مدیریت بهره­برداری از آب­های زیرزمینی و ارزیابی عملکرد طرح تغذیه مصنوعی دشت آب باریک بم. آب و فاضلاب. ۱۵. ۲: ۴۵-۵۸.
AghaKouchak,A., Feldman,D., Hoerling,M., Huxman,T., Lund,J. 2015. Water and climate: Recognize anthropogenic drought. Nature 524, 409–411.
Alcamo,J., FlöRke,M., MäRker,M., 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrology Science Journal. 52: 247–275.
Alley, W.M., Reilly,T.E., Franke,O.L. 1999. Sustainability of ground-water resources. U.S. Dept. of the Interior, U.S. Geological Survey ; U.S. G.P.O. ; U.S. Geological Survey, Branch of Information Services [distributor, Denver, CO; [Washington, D.C.]; Denver, CO.
Arnell,N.W. 2004. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change. 14: 31-52.
Asoka,A., Gleeson,T., Wada,Y., Mishra,V. 2017. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience 3: 16-30.
DeNicola,E., Aburizaiza,O.S., Siddique,A., Khwaja,H., Carpenter,D.O. 2015. Climate Change and Water Scarcity: The Case of Saudi Arabia. Annual Global Health. 81: 342-353.
Famiglietti,J.S., Lo,M., Ho,S.L., Bethune,J., Anderson,K.J., Syed,T.H., Swenson,S.C., de Linage,C.R., Rodell,M. 2011. Satellites measure recent rates of groundwater depletion in California’s Central Valley: centeral valley grandwater depletion. Geophysical Research Letter. 38: 21-29.
Gain,A.K., Giupponi,C. 2015. A dynamic assessment of water scarcity risk in the Lower Brahmaputra River Basin: An integrated approach. Ecological Indicator. 48: 120-131.
Gleeson,T., Wada,Y. 2013. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environmental Research Letter. 8: 44010-44020.
Gleeson,T., Wada,Y., Bierkens,M.F.P., van Beek,L.P.H. 2012. Water balance of global aquifers revealed by groundwater footprint. Nature 488: 197-200.
Gohari,A., Bozorgi,A., Madani,K., Elledge,J., Berndtsson,R. 2014. Adaptation of surface water supply to climate change in central Iran. Journal of Water Climate Change 5: 391-400.
Guo,Y., Shen,Y. 2015. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. Journal of Hydrology. 527: 251-261.
Hagemann,S., Chen,C., Clark,D.B., Folwell,S., Gosling,S.N., Haddeland,I., Hanasaki,N., Heinke,J., Ludwig,F., Voss,F., Wiltshire,A.J. 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamic. 4: 129-144.
Immerzeel,W.W., Bierkens,M.F.P. 2012. Asia’s water balance. Nature Geoscience. 5: 841-842.
Kahil,M.T., Dinar,A., Albiac,J. 2015. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology. 522: 95-109.
Keshavarz,A., Dehghanisanij,H., Asadi,H., Oweis,T and Abdelwahab,A.M. 2012. Policies, Institutions and Economies of Water Resources and Management in the Karkheh River
Basin of Iran. CPWF Karkheh River Basin Research Report 10. ICARDA, Aleppo, Syria.
Kiguchi,M., Shen,Y., Kanae,S., Oki,T. 2015. Re-evaluation of future water stress due to socio-economic and climate factors under a warming climate. Hydrology Science Journal. 60: 14-29.
Leblanc,M., Tweed,S., Van Dijk,A., Timbal,B. 2012. A review of historic and future hydrological changes in the Murray-Darling Basin. Global Planet Change. 80.81: 226-246.
Lund,J.R., Palmer,R.N. 1996. Wate Resource System Modeling for Conflict Resolution. Update 108: 70-82.
MacDonald,G.M. 2010. Water, climate change, and sustainability in the southwest. Processing National Academy 107: 21256-21262.
Madani,K. 2014. Water management in Iran: what is causing the looming crisis? Environmental Study Science. 4: 315-328.
Madani,K., Mariño,M.A. 2009. System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin. Water Recourses Management. 23: 2163-2187.
Mao,D., Cherkauer,K.A. 2009. Impacts of land-use change on hydrologic responses in the Great Lakes region. Journal of Hydrology. 374: 71-82.
Mays,L.W. 2013. Groundwater Resources Sustainability: Past, Present, and Future. Water Resources Managment. 27: 4409-4424.
Meadows,D.H., Meadows,D.L., Randers,J., Behrens,W. 2007. The Limits to growth; a report for the Club of Rome’s project on the predicament of mankind. Universe Books, New York.
Mirchi,A., Madani,K., Roos,M., Watkins,D.W. 2014. Climate Change Impacts on California’s Water Resources, in: Schwabe,K., Albiac,J., Connor,J.D., Hassan,R.M., Meza González,L. (Eds.), Drought in Arid and Semi-Arid Regions. Springer Netherlands, Dordrecht. 301-319.
Oki,T., Kanae,S. 2006. Global Hydrological Cycles and World Water Resources. Science 313: 1068-1072.
Piao,S., Ciais,P., Huang,Y., Shen,Z., Peng,S., Li,J., Zhou,L., Liu,H., Ma,Y., Ding,Y., Friedlingstein,P., Liu,C., Tan,K., Yu,Y., Zhang,T., Fang,J. 2010. The impacts of climate change on water resources and agriculture in China. Nature 467: 43-51.
Porhemmat,J., Siadat,H and Oweis,T. (Eds). 2012. Water Resources of the Karkheh River Basin: Hydrology, Runoff, and Water Balance. CPWF Karkheh River Basin Research Report 11. ICARDA, Aleppo, Syria., 150.
Rodell,M., Velicogna,I., Famiglietti,J.S. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460:999-1002.
Schewe,J., Heinke,J., Gerten,D., Haddeland,I., Arnell,N.W., Clark,D.B., Dankers,R., Eisner,S., Fekete,B.M., Colón-González,F.J., Gosling,S.N., Kim,H., Liu,X., Masaki,Y., Portmann,F.T., Satoh,Y., Stacke,T., Tang,Q., Wada,Y., Wisser,D., Albrecht,T., Frieler,K., Piontek,F., Warszawski,L., Kabat,P. 2014. Multimodel assessment of water scarcity under climate change. Proceeding National Academy. 111: 3245-3250.
Sophocleous,M. 2004. Global and Regional Water Availability and Demand: Prospects for the Future. National Resources Research. 13: 61-75.
Sperna Weiland,F.C., van Beek,L.P.H., Kwadijk,J.C.J., Bierkens,M.F.P. 2012. Global patterns of change in discharge regimes for 2100. Hydrology Earth System Science. 16: 1047-1062.
Steinschneider,S., McCrary,R., Mearns,L.O., Brown,C. 2015a. The effects of climate model similarity on probabilistic climate projections and the implications for local, risk-based adaptation planning:international corrlation and risk. Geophysical Research Letter. 42: 5014-5044.
Steinschneider,S., McCrary,R., Wi,S., Mulligan,K., Mearns,L.O., Brown,C. 2015b. Expanded Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under Hydroclimatic Uncertainties. J. Water resources Management. 141: 401-502.
Steinschneider,S., Wi,S., Brown,C. 2015c. The integrated effects of climate and hydrologic uncertainty on future flood risk assessments: flood risk under hydrogic and climate uncertainty. Hydrology Process. 29: 2823-2839.
Taft,H.L. 2015. Water Scarcity, in: Food, Energy and Water. Elsevier. 395-429.
Taylor,R., 2009. Rethinking Water Scarcity: The Role of Storage. Geophysical Union 90: 237-245.
UN Water. 2014. Securing suatainable water for all. A Post-2015 Global Goal for Water: Synthesis of key findings and recommendations from UN‐Water. Final approved by SPM meeting 27 January 2014.
Vogel,R.M., Lall,U.X., Cai,Rajagopalan,B., Weiskel,P.K., Hooper,R.P  and Matalas,N.C. 2015. Hydrology: The interdisciplinary science of water:hydrology:the interdisciplinary the science of water . Water resources Research 51.6: 4409-4430.
Vörösmarty,C.J., McIntyre,P.B., Gessner,M.O., Dudgeon,D., Prusevich,A., Green,P., Glidden,S., Bunn,S.E., Sullivan,C.A., Liermann,C.R., Davies,P.M. 2010. Global threats to human water security and river biodiversity. Nature 468: 334-334.
Vörösmarty,C.J., Green,P., Salisbury,J., Lammers,R. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science. 289: 284-288.
Wada,Y., Bierkens,M.F.P. 2014. Sustainability of global water use: past reconstruction and future projections. Environmental Research Letter 9: 104-116.
Wada,Y., van Beek,L.P.H., Viviroli,D,Dürr, H.H., Weingartner,R., Bierkens,M.F.P.
 2011. Global monthly water stress: 2. Water demand and severity of water stress: global monthly water stress 2. Water resources Research. 47: 12-21.
Wu,P., Christidis,N., Stott,P. 2013. Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change  3: 807-810.
Xu,Z.X., Chen,Y.N., Li,J.Y. 2004. Impact of Climate Change on Water Resources in the Tarim River Basin. Water Resources Management. 18: 439-458.