محاسبه تبخیر - تعرق پتانسیل با استفاده از سنجش از دور و کم‌ترین داده زمینی (مطالعه موردی دشت قزوین)

نویسندگان

1 مربی گروه عمران موسسه آموزش عالی اسرار، مشهد، ایران

2 کارشناس بخش پایش ماهواره‌ای زمین، سازمانی فضایی ایران، مرکز ماهدشت

3 دانشجوی ارشد رشته منابع آب، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران،

چکیده

یکی از مهم‌ترین اجزای بیلان آبی در یک حوضه و یا در یک دشت تبخیر - تعرق پتانسیل () می‌باشد. اندازه‌گیری این پارامتر به صورت میدانی کاری بسیار وقت‌گیر و هزینه‌بر است. بنابراین سنجش از دور با امکاناتی که فراهم آورده است ما را قادر ساخته تا با در نظر گرفتن بیلان انرژی در یک محدوده بتوانیم مقدار انرژی رسیده به زمین را که صرف تبخیر - تعرق (ET) می‌شود محاسبه کنیم. از این رو، در این تحقیق با استفاده از تصاویر ماهواره‌ای لندست 7 و 8 و معادله پرستلی - تیلور (معادله محاسبه  بر پایه تابش) میزان  گیاه محاسبه شد. الگوریتم محاسبه  ماهواره‌ای با به کارگیری چهار معادله محاسبه  بر اساس تابش (پرستلی - تیلور)، آیرودینامیک، ترکیبی (پنمن) و اختلاف دمای روزانه (هارگریوز) مورد ارزیابی قرار گرفت. داده‌های هواشناسی از هفت ایستگاه مختلف در دشت قزوین دریافت شد. نتایج نشان داد که الگوریتم ارایه شده به خوبی قادر به تخمین  در ایستگاه‌های هواشناسی می‌باشد. این الگوریتم بیش­ترین همبستگی را با  برابر با 95/0 و  برابر با 6/0 با معادله پرستلی - تیلور به دست آمده از داده‌های هواشناسی داشت. همچنین با ارزیابی این الگوریتم در سطح پوشش گیاهی گندم در دشت قزوین، مشخص شد که این الگوریتم به خوبی قادر به تشخیص گیاه در سطح زمین است و مقادیر  را با توجه به تغییرات در روند رشد گیاه به صورت دقیق‌تر نسبت به  های به دست آمده از داده‌های هواشناسی برآورد می‌کند. بنابراین، این الگوریتم با در نظر گرفتن سطح پوشش گیاهی می‌تواند مقادیر بهتر و دقیق‌تری را از  ارایه نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Potential Evapotranspiration Calculation Using Remote Sensing With Minimal Amount of Ground Data

نویسندگان [English]

  • maziyar bahrami 1
  • ali Mokhtari 2
  • mahdi bahrami 3
1 Assistant professor in civil engineering department of Asrar University, Mashhad, Iran
2 Engineer at Iranian space agency, the national earth observation center, Mahdasht, Alborz.
3 Water resources management student of irrigation and reclamation engineering department, University of Tehran,
چکیده [English]

Potential evapotranspiration is one of the most important components in water balance equation in a watershed or a plain. ETP measurement is a costly and time-consuming process. Therefore, remote sensing allowed us to estimate the surface energy considering the energy balance in a small area in order to calculate evapotranspiration (ET). Thus in this study, the Priestly-Taylor equation associated with Landsat 7 and 8 were taken into account for crop ETP calculation. The remotely sensed ETP algorithm was evaluated against four different ETP calculation approaches including radiation approach (Priestly-Taylor), aerodynamic approach, combination approach (Penman), and temperature approach (Hargreaves). These approaches were conducted using meteorological data obtained from seven stations around the Qazvin plain. Results showed that this algorithm could properly estimate ETP, and had the best relationship with ETP calculated from the Priestly-Taylor equation with R2 of 0.95 and RMSE of 0.6. Also, this algorithm could detect the crop on the ground and presented more actual values of ETP compared with ETPs calculated from meteorological data. Therefore, this algorithm could estimate ETP more accurately by distinguishing the dense of vegetation on the ground.

کلیدواژه‌ها [English]

  • Landsat imagery
  • Potential Evapotranspiration
  • Priestly-Taylor
  • Remote Sensing
Allen,R.G., Pereira,L.S., Raes,D., Smith,M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome. 300.9: D05109.
Allen,R.G., Tasumi,M., Trezza,R., Waters,R., Bastiaanssen,W. 2002. SEBAL (Surface Energy Balance Algorithms for Land). Advance Training and Users Manual Idaho Implementation, version. 1. 97.
Awan,U.K., Ismaeel,A. 2014. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of Hydrology. 519:1368-1382.
Bastiaanssen,W.G., Menenti,M., Feddes,R.A., Holtslag,A.A.M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology. 212: 198-212.
Bastiaanssen,W.G., Pelgrum,H., Wang,J., Ma,Y., Moreno,J.F., Roerink,G.J., Van der Wal,T. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. Journal of hydrology. 212: 213-229.
Blaney,H.F., Criddle,W.D. 1950. Determining water needs from climatological data. USDA Soil Conservation Service. SOS–TP, USA, 8-9.
Dingman,S.L. 2015. Physical hydrology. Waveland press.
Garatuza-Payan,J., Watts,C.J. 2005. The use of remote sensing for estimating ET of irrigated wheat and cotton in Northwest Mexico. Irrigation and Drainage Systems. 19.3-4: 301.
Guitjens,J.C. 1982. Models of Alfalfa Yield and Evapotranspiration. Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers. 108: 212- 222.
Harbeck,J. 1962. A Practical Field Technique for Measuring Reservoir Evaporation Utilizing Mass-transfer Theory, US Geological Survey. Paper 272-E: 101-105.
Hargreaves,G.H., Allen,R.G. 2003. History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering. 129.1: 53-63.
Hargreaves,G.H., Samani,Z.A. 1985. Reference crop evapotranspiration from temperature. Applied engineering in agriculture. 1.2: 96-99.
Hargreaves,G.H., Samani,Z.A. 1982. Estimating potential evapotranspiration. J. Irrigation and Drainage Engineering. 1083: 225-230.
Jaber,H.S., Mansor,S., Pradhan,B., Ahmad,N. 2016. Evaluation of SEBAL model for Evapotranspiration mapping in Iraq using remote sensing and GIS. International Journal of Applied Engineering Research. 11.6: 3950-3955.
Jiménez-Muñoz,J.C., Cristóbal,J., Sobrino,J.A., Sòria,G., Ninyerola,M.,  Pons,X. 2009. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Transactions on Geoscience and Remote Sensing. 47.1: 339-349.
Jimenez-Munoz,J.C., Sobrino,J.A., Skokovi,D., Mattar,C., Cristóbal,J. 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters. 11.10: 1840-1843.
Lian,J., Huang,M. 2016. Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agricultural Water Management. 165: 153-162.
Mateos,L., Gonzlez-Dugo,M.P., Testi,L.,  Villalobos,F.J. 2013. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agricultural water management. 125: 81-91.
McJannet,D.L., Webster,I.T., Cook,F.J. 2012. An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environmental modelling and software, 31: 76-83.
McMahon,T.A., Peel,M.C., Lowe,L., Srikanthan,R., McVicar,T.R. 2013. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences. 17.4: 1331.
Parodi,N., Gabriel,I. 2002. AHVRR Hydrological Analysis System Algorithms and theory - Version 1.3. John Wiley and Sons, NewYork.
Penman,H.L. 1948. Natural evaporation from open water, bare soil and grass. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 193. 1032: 120-145. The Royal Society.
Penman,H.L. 1956. Evaporation: an introductory survey. Netherlands Journal of Agricultural Science, 4.1: 9-29.
Priestley,C.H.B., Taylor,R.J. 1972. On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100, 81–92.
Samani,Z., Bawazir,A.S., Bleiweiss,M., Skaggs,R., Tran,V.D. 2007. Estimating daily net radiation over vegetation canopy through remote sensing and climatic data. Journal of irrigation and drainage engineering. 133.4: 291-297.
Singh,R.K., Senay,G.B. 2015. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States. Water. 8.1: 9-20.
Sun,D., Kafatos,M. 2007. Note on the NDVI‐LST relationship and the use of temperature‐related drought indices over North America. Geophysical Research Letters. 34.24: 1-4.
Waters,R., Allen,R., Tasumi,M., Trezza,R., Bastiaanssen,W.G.M. 2002. SEBAL (Surface Energy Balance Algorithms for Land): advanced training and user’s manual. Department of Water Resources, University of Idaho, Kimberly. 98p.
Weiß,M., Menzel,L. 2008. A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Advances in Geosciences. 18: 15-23.