مدل‌سازی هیدرولیکی شبکه آب‏رسانی فضای سبز با استفاده از EPANET و پیش‌بینی مشخصات هیدرولیکی آن به کمک هوش مصنوعی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان

2 مهنندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

4 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

 بروز مشکل در هر یک از بخش­های شبکه­های آب‏رسانی، در اثر پدیده­های ناشی از نوسانات فشار و یا سرعت، می­تواند سبب ایجاد اختلال در زندگی مصرف­کنندگان گردد. برای جلوگیری از بروز این گونه مشکلات، طراحی مناسب و مدیریت بهینه شبکه­ها از اهمیت بالایی برخوردار است. در پژوهش حاضر، کنترل­ فشار و سرعت جهت جلوگیری از بروز مشکلات در شبکه آب‏رسانی بررسی شده و همچنین مشخصات هیدرولیکی جریان در لوله­ها توسط شبکه عصبی مصنوعی پیش­بینی ‌گردید. در این راستا، ابتدا با زون­بندی شهر کنگاور در استان کرمانشاه (به عنوان مطالعه موردی) به نواحی شش­گانه براساس پارامترهای توزیع، ترسیم شبکه­های آب‏رسانی فضای سبز برای شهر با دوره طرح 10ساله و جمعیت هدف 95 هزار نفر، بر اساس الگوی آبیاری 22 ساعته در شبانه­روز و سرانه فضای سبز 6/29 مترمربع در انتهای دوره طرح انجام گردید. سپس، با استفاده از نرم­افزار EPANET به تحلیل فشار، سرعت و دبی در شبکه پرداخته شد. براساس نتایج حاصل، بیشینه فشار در گره 3-3 در ناحیه سوم فشاری روی داد که در حدود 100 متر آب است و بیشینه میزان سرعت در شبکه، در حدود 4/1 متر بر ثانیه به‏دست آمد. همچنین، نتایج نشان داد که دبی استفاده شده برای شبکه با توجه به قطر لوله­ها و مسیرهای انتخابی در نواحی مختلف در محدوده مناسب می­باشد. در ادامه، با استفاده از مقادیر اندازه­گیری شده، شبکه عصبی مصنوعی آموزش داده شد و شبکه بهینه با ضرایب همبستگی 87/0 و 85/0 به ترتیب برای فاز آموزش و آزمون، انتخاب شد. سپس دبی، سرعت و افت جریان لوله توسط شبکه بهینه پیش­بینی گردید. نتایج نشان دهنده قابلیت بالای شبکه عصبی مصنوعی در تحلیل و پیش­بینی مشخصات هیدرولیکی لوله­های شبکه آب‏رسانی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Hydraulic modeling of water supply network of green spaces using EPANET and prediction of hydraulic characteristics using artificial intelligence

نویسندگان [English]

  • saeed farzin 1
  • Sayed-Farhad Mousavi 2
  • mohammad reza hassanvand 3
  • amir hossien Salimi 3
  • mahsa Doostmohammadi 4
1 Assistant Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
4 M.Sc. Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran.
چکیده [English]

The occurrence of a problem in each of the water supply network sections due to pressure or velocity fluctuations can cause disruptions in consumers’ regular life. To help avoid these problems, proper design and optimal management of the network is very important. In this study, control of water pressure and velocity to prevent problems in the water supply network is investigated, and hydraulic flow characteristics in pipes are predicted by artificial neural network. In this regard, first, by zoning of Kangavar city in Kermanshah province (as a case study), six zones were identified, based on distribution parameters, the water supply network for the green space of the city, for 10-year plan and target population of 95000, according to working pattern of 22 hours per day and per capita green space of 29.6 m2 at the end of design period was drawn. Then, EPANET software was used to analyze the pressure, velocity and flow in the pipe network. Based on the results, maximum pressure occurred in the 3-3 joint in the third pressure zone, which was about 100 m of water, and maximum velocity in the network was about 1.4 m/s. Also, results showed that the flow rate used for the network is due to the diameter of the pipes and selected paths in different zones in the appropriate range. Subsequently, artificial neural network was trained using the available quantities and the optimal network was selected with a correlation coefficient of 0.87 and 0.85, respectively, for training and testing phases, respectively. Then, the flow velocity and pipe friction-loss were predicted by the optimal network. Results indicated high potential of artificial neural network in analyzing and predicting hydraulic characteristics of water pipe networks.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • EPANET
  • Loss of pressure
  • Kangavar
  • Water supply network management
عطاری،م.، زکی­پور،م و غفور مغربی،م. 1394. تعیین موقعیت و مقدار نشت در شبکه­های آبرسانی با استفاده ترکیب فشارسنجی و دبی­سنجی به روش شبکه­های عصبی، دومین همایش ملی راهکارهای پیش­روی بحران آب در ایران و خاورمیانه، شیراز، ایران.
کارآموز،م.، تابش،م.، نظیف،س و مریدی،ع. 1384. پیش‌بینی فشار در شبکه‌های آبرسانی با استفاده از شبکه‌های عصبی مصنوعی و استنتاج فازی، مجله آب و فاضلاب. 1. 16: 3-14.
منهاج،م. 1395. مبانی شبکه­های عصبی، انتشارات دانشگاه صنعتی امیر کبیر.
وزارت کشور. 1385. طرح مطالعات مرحله اول آبیاری فضای سبز شهر کنگاور، مهندس مشاور گاماسیاب.
وزارت نیرو. 1389. ضوابط طراحی فضاهای سبز شهری، معاونت برنامه­ریزی و نظارت راهبردی ریاست جمهوری، نشریه 203.
وزارت نیرو. 1392. ضوابط طراحی سامانه­های انتقال و توزیع آب شهری و روستایی، معاونت برنامه­ریزی و نظارت راهبردی ریاست جمهوری، نشریه 3-117.
Ahn,J.C., Lee,S.W., Lee,G.S., Koo,J.Y. 2005. Predicting water pipe breaks using neural network. Water Science and Technology: Water Supply. 5.3-4: 159-72.
Araujo,L.S., Ramos,H., Coelho,S.T. 2006. Pressure control for leakage minimization in water distribution systems management. Water Resources Management. 20.1: 133-49.
Bagirov,A.M., Barton,A.F., Mala-Jetmarova,H., Nuaimat,A., Ahmed,S.T., Sultanova,N., Yearwood,J. 2013. An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling. Mathematical and Computer Modelling. 57.3: 873-86.
Bazargan-Lari,M.R. 2014. An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events. Journal of Cleaner Production. 78: 1-14.
Behboudian,S., Tabesh,M., Falahnezhad,M., Ghavanini,F.A. 2014. A long-term prediction of domestic water demand using preprocessing in artificial neural network. Journal of Water Supply: Research and Technology -Aqua. 63.1: 31-42.
De Corte,A., Srensen,K. 2013. Optimization of gravity-fed water distribution network design: A critical review. European Journal of Operational Research. 228.1: 1-10.
Gama,M.C., Lanfranchi,E.A., Pan,Q., Jonoski,A. 2015. Water distribution network model building, case study: Milano, Italy. Procedia Engineering. 119: 573-582.
Georgescu,A.M., Perju,S., Georgescu,S.C., Anton,A. 2014. Numerical model of a district water distribution system in Bucharest. Procedia Engineering. 70: 707-714.
Kara,S., Karadirek,I.E., Muhammetoglu,A., Muhammetoglu,H. 2016. Hydraulic modeling of a water distribution network in a tourism area with highly varying characteristics. Procedia Engineering. 162: 521-529.
Kutylowska,M. 2017. Comparison of two types of artificial neural networks for predicting failure frequency of water conduits. Periodica Polytechnica Civil Engineering. 61.1: 1-6.
Rossman,L.A. 1999. Computer Models/EPANET. Water Distribution Systems Handbook. McGraw-Hill, New York.
Rossman,L.A. 2000. EPANET 2: User’s manual. McGraw-Hill, New York.