تحلیل اثرات مدیریت کوددهی در افزایش بهره‌وری آب و کود در کشت دیم ذرت: تحلیل سناریوها با استفاده از مدل HDYRUS

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، گروه مهندسی آب، دانشگاه زابل

2 دانشیار گروه مهندسی آب، دانشگاه زابل، زابل، ایران

3 مربی گروه مهندسی آب، دانشگاه زابل

چکیده

آبشویی از اراضی کشاورزی از مهم‌ترین منابع نقطه‌ای نیتروژن محسوب می­شود که باعث آلودگی آبخوان‌های طبیعی می‌شود. اگرچه نیتروژن یکی از مهم‌ترین عناصر غذایی در تکمیل فرآیند رشد گیاه است، اما کوددهیِ بدون مدیریت و فراتر از حد نیاز گیاه، باعث افزایش آبشویی نیتروژن به منابع آب زیرزمینی شده و منتج به ناپایداری زیست­محیطی می­شود. این مساله به ویژه در کشت دیم به دلیل وقوع بارندگی‌های ناخواسته که ممکن است بیش‌تر از ظرفیت نگهداشت آب در خاک باشد، از اهمیت بیش‌تری برخوردار خواهد بود. به همین دلیل در این پژوهش، سطح بهینه‌ی کود نیتروژن در کشت ذرت دیم در استان مازندران تعیین شد. بدین منظور، ابتدا مدل HYDRUS-2D با استفاده از داده‌های جمع­آوری شده طی تحقیقی دو ساله در مزرعه ذرت، برای پارامترهای هیدرولیکی و شیمیایی واسنجی و صحت­سنجی شد. سپس، از مدل برای شبیه­سازی میزان آبشویی نیترات، نیتروژن جذب شده و نیتروژن باقی­مانده در خاک در 9 سناریوی شدت کودی شامل تیمارِ بدون کود (تنها در نظر گرفتن 10 کیلوگرم در هکتار نیتروژن اولیه در خاک)، 50، 100، 150، 200، 250، 300، 350 و 400 کیلوگرم در هکتار استفاده شد. در نهایت، ضمن تحلیل این پارامترها، از معیارهای کارآیی مصرف نیتروژن و نسبت عملکرد محصول به شدت کود نیتروژن، بهترین سطح کوددهی در کشت دیم ذرت تعیین شد. اگرچه بر اساس معیارهای جذرمیانگین مربعات خطا (18/1-8/0 میلی­متر برای رطوبت، 95/7-38/0 میلی­گرم در لیتر برای غلظت نیترات و 8/96-96/3کیلوگرم در هکتار برای میزان نیتروژن جذب شده به­وسیله­ی گیاه)، مدل HYDRUS-2D از دقت مقبولی در شبیه­سازی انتقال آب و املاح در خاک برخوردار است، اما، تغییرات کم­تر رطوبت و غلظت املاح در لایه­های پایینی خاک در طول فصل رشد سبب شد تا دقت مدل در شبیه­سازی حرکت آب و املاح در این لایه­ها بیش­تر از لایه­های سطحی باشد. بر اساس نتایج شبیه­سازی شده با مدل معلوم شد به ازای هر 50 کیلوگرم در هکتار افزایش در میزان کود تا 200 کیلوگرم در هکتار، میزان جذب به طور متوسط 20 کیلوگرم در هکتار افزایش می­یابد، اما پس از آن، به ویژه برای سطوح بالاتر از 250 کیلوگرم در هکتار، میزان جذب کم­تر از 15 درصد افزایش می­یابد. همگام با کاهش جذب نیتروژن به وسیله­ی گیاه، میزان آبشویی نیتروژن از محدوده­های عمقی مختلف خاک نیز افزایش یافته و باعث خروج عناصر غذایی از لایه­های سطحی و تجمع آن در لایه­های زیرین در انتهای فصل رشد می­شود. شاخص کارآیی مصرف کود بیش­ترین مقدار خود را در سطح کوددهی 150 کیلوگرم در هکتار داشته و در سطوح بالاتر، ثابت مانده و یا کاهش می­یابد. این در حالی است که افزایش شدت کود نیتروژن همواره باعث کاهش میزان عملکرد تولیدی به ازای واحد کود مصرفی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the consequences of fertilization management in increasing water and nitrogen productivity under rainfed maize cultivation: Scenarios assessment by using the HYDRUS model

نویسندگان [English]

  • narges Ebrahimi 1
  • Fatemeh Karandish 2
  • parisa Kahkhamoghadam 3
1 MSc student in Irrigation and Drainage, Water Engineering Department, University of Zabol.
2 Assistant Professor, Water Engineering Department, University of Zabol., Zabol., Iran
3 Instructor, Water Engineering Department, University of Zabol
چکیده [English]

Nitrogen (N) loss from the agricultural lands is one of the most important point-source of N which pollutes natural aquifers. While N is one of the driving nutrition in fulfilling crop growth cycle, unmanaged fertilization beyond crop demand leads to increased N leaching to groundwater resources and causes environmental unsustainability. This issue is more highlighted in rainfed cultivation due to unexpected rainfall events which might be beyond crop water requirement. Hence, we determined optimal N fertilizer rate under rainfed maize cultivation in Mazandaran province. In this regard, HYDRUS-2Dwas first calibrated and validated for soil hydraulic and chemical parameters based on data collected during a two-year maize field investigation. The model was then used for simulating the amount of nitrate leaching, N uptake and N residual in soil under 9 fertilization levels treatments including no fertilization (only 10 kg ha-1 was considered as initial soil N nitrogen), 50, 100, 150, 200, 250, 300, 350 and 400 kg ha-1. Finally, optimal fertilization rate for rainfed maize was determined based on N use efficiency and the ratio of crop yield to N fertilization rate.While according to RMSE (0.8-1.18 mm for water content, 0.38-7.95 mg l-1 for nitrate concentration, and 3.96-8.96 kg ha-1 for crop N uptake),HYDRUS-2D was capable enough for simulating soil water and solute dynamics, the lower variation in soil water content and solute concentration during the cropping cycle caused the model to be more accurate for simulating soil water and solute dynamics in these layers compared to the surface layer.Based on the simulated results, N uptake will increased by 20 kg ha-1 on average in response to every 50 kg ha-1 increase in N fertilization rate beyond 200 kg ha-1. N leaching below different soil depths increased along with reduced crop N uptake, which led to nutrient removal from the surface soil layers and its aggregation in underlying soil layers at the end of the growing season. Fertilizer use efficiency had its highest value at fertilization rate of 150 kg ha-1, while it remained unchanged at higher N rates. Nevertheless, increased N rate always lead to yield reduction per unit applied fertilizer.

کلیدواژه‌ها [English]

  • Fertilizer use efficiency
  • Nitrate leaching
  • N Uptake
  • Rainfed maize yield
  • The HYDRUD2D model
.Ajdary,K., Singh,D.K., Singh,A.K., Khanna,M. 2007. Modeling of nitrogen leachingfrom experimental onion field under drip fertigation. Agricultural water management. 89.1: 15-28.
Alva,A.K., Paramasivam,S., Obreza,T.A., Schumann,A.W. 2006. Nitrogen best management practice for citrus trees I. Fruit yield quality, and leaf nutritional status. Scientia horticulturae. 107.3: 233-244.
Barton,L., Colmer,T.D. 2006. Irrigation and fertilizer strategies for minimizing nitrogen leaching from turfgrass. Agricultural Water Management. 80.1: 160-175.
Cote,C.M., Bristow,K.L., Charlesworth,P.B., Cook,F.J., Thorburn,P.J.2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Science. 22.3-4: 143-156.
Daudén,A., Quilez,D. 2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. European Journal of Agronomy. 21: 7–19.
Davies,D.B. 2000. The nitrate issue in England and Wales. Soil Use Management.16: 142 - 144
Darzi-Naftchali,A., Karandish,F., Asgari,A. 2017. Diagnosing drainage problems in coastal area using machine-learning and geostatistical models. Irrigation and Drainage. 66.3: 428-438.
Feddes,R.A., Kowalik,P.J., Zaradny,H. 1978. Simulation of field water use and cropyield. In: Simulation Monographs. Pudoc, Wageningen.
Gärdenäs,A.I., Hopman,J.W., Hanson,B.R., Simunek,J. 2005. Two-dimensionalmodeling of nitrate leahing for various fertigation scenarios under micro-irrigation. . Agricultural water management. 74.3: 219- 242.
Gasser,M.O., Laverdiere,M.R., Lagace Caron,R.J. 2002. Impact of potato-cereal rotation and slurry applications on nitrate leaching and nitrogen balance in sandy soils. Canadian journal of soil science 82: 469-479.
Gheysari,M., Mirlatifi,S.M., Homaee,M., Asadi,M.E., Hoogenboom,G. 2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural water management. 96.6: 946- 954.
Ghorbani-Dashtaki,Sh., Homaei,M and Mahdian,MH. 2009. Estimating the infiltration parameters using neural network. Journal of Water and Soil. 23.1: 185-198. Green,W.H
Groffman,M.P. 2000. Nitrate in the environment. In: Sumner, M. (Ed.), Handbook of Soil Science. CRC Press, pp. C 190 n C 200.
Hallberg, G.R.1989. Nitrate in groundwater in the United States. In: Follee, R.F. (Ed.), Nitrogen Management and Groundwater Protection. Elsevier, Amsterdam, Netherlands, pp.35n138.
Hanson,B.R., Simunek,J., Hopmans,J.W. 2006. Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numericalmodeling. Agricultural water management. 86.1: 102-113.
Haverkort,A.J., Vos,J., Booij,R. 2003. Precision management of nitrogen and water in potato production through monitoring and modelling. In XXVI International Horticultural Congress: Potatoes, Healthy Food for Humanity: International Developments in Breeding. 619:213-224.
Hutton,R., Holzapfel,B., Smith,J., Hutchinson,P., Barlow,K., Bond,W. 2008. Influence of irrigation and fertilizer management on the movement of water and nutrients within and below rootzone of vines for sustainable grape production. CRC for Viticulture-Final Report S2.3.6
IMAJ. 2016. Iran’s Ministry of Agriculture-Jahad. http://www.maj.ir/.
Jia,X., Shao,L., Liu,P., Zhao,B., Gu,L., Dong,S.H., Bing,S.H., Zhang,J., Zhao,B. 2014. Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions. Agricultural Water Management. 137: 92-103.
Kandelous,M.M., Simůnek,J. 2010. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agricultural Water Management. 97.7: 1070-1076.
Karandish,F., Hoekstra,A.Y. 2017. Informing national food and water security policy through water footprint assessment: the case of Iran. Water 9 .11: 831-856.
Karandish,F., Simůnek,J. 2016a. A comparison of numerical and machine-learning modeling of soil water content with limited input data. Journal of Hydrology. 543: 892-909.
Karandish,F.,Shahnazari,A. 2016. Soil temperature and maize nitrogen uptake improvement under partial root zone drying irrigation. Pedosphere. 26.6: 872-886
Karandish,F., Simůnek,J. 2016b. A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies. Agricultural Water Management. 178: 291-303.
Karandish,F., Simůnek,J. 2017. Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS. Agricultural Water Management. 193: 174-190.
Karandish,F., Darzi-Naftchali,A., Asgari,A. 2017. Application of machine-learning models for diagnosing health hazard of nitrate toxicity in shallow aquifers. Paddy and Water Environment. 15: 201-215.
Kurtzman,D., Shapira,R.H., Bar-Tal,A., Fine,P., Russo,D. 2013. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: observation, calibrated models, simulations and agro-hydrological conclusions.Journal Contaminant Hydrology. 151: 93-104.
Li,J., Liu,Y. 2011. Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation. Irrigation science. 29.6: 469-478.
Mguidiche,A., Provenzano,G., Douh,B., Khila,S., Rallo,G., Boujelben,A. 2015. Assessing HYDRUS-2D to simulate soil water content (SWC) and salt. accumulation under an SDI system: application to a potato crop in a semi-arid area of central Tunisia. Irrigation and Drainage. 64.2: 263-274.
Mosier,A.R., Bleken,M.A., Chaiwanakupt,P., Ellis,E.C., Freney,J.R., Howarth,R.B., Matson,P.A., Minami,K.,
Nash,J.E and Sutcliffe,J.V. 1970. River flow forecasting through conceptual models. Part 1: a discussion of principles. Journal of Hydrology. 10: 2082–2090.
Naylor,R., Weeks,K.N., Zhu,Z.L. 2002. Policy implications of human-accelerated nitrogen cycling. In The nitrogen cycle at regional to global scales (pp: 477-516). Springer Netherlands.
Parchami,F., Mirlatifi,S.M., GhorbaniDashtaki,S.h and Mahdian,M.H. 2010. Estimating cumulative soil water infiltration using pedo-transfer functions in calcareous soils. Journal of Water and Soil Conservation. 17.3: 25-44.
Paredes,P., Rodrigues,GC., Alves,I, Pereira,LS. 2014. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agriculture Water Management. 135:27-39.
Phogat,V., Skewes,M.A., Cox,G., Alam,J., Grigson,G., Simunek,J. 2013. Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree.Agricultural water management. 127: 74-84.
Pratt,P.F. 1985. Agriculture and groundwater quality. CAST report, p. 103.
Ramos,T.B., Simunek,J., Goncalves,M.C., Martins,J.C., Prazeres,A., Pereira,L.S. 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management. 111: 87-104.
Simůnek,J., Van Genuchten,M.Th., Sejna,M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal. 7.2: 587-600.
Simůnek,J., Hopmans,J.W. 2009. Modeling compensated root water and nutrient uptake. Ecological modelling, 220.4: 505-521.
Tournebize,J., Gregoire,C., Coupe,R.H., Ackerer,P. 2012. Modelling nitrate transport under row intercropping system: vines and grass cover. Journal of hydrology. 440: 14-25.
Vrugt,J.A., Hopmans,J.W., Simunek,J. 2001. Calibration of a two-dimensional root water uptake model. Soil Science Society of America Journal. 65.4:1027-1037
 Wang,Z., Li,J., Li,Y. 2014. Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain. Agricultural water management. 142: 19-28.
Wei,Y.P., Chen,D.L., Hu,K.L., Willett,I.R., Langford,J. 2009. Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China. Agricultural water management, 96.7: 1114-1119.
 Wienhold,B.J., Trooien,T.P., Reichman,G.A. 1995. Yield and nitrogen use efficiency of irrigated corn in the northern Great Plains. Agronomy Journal. 87.5: 842-846.