برآورد تغییرات در تابع توزیع احتمال و تجمعی تجربی دبی اوج لحظه‌ای سالانه سیلاب

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سری زمانی دبی اوج سالانه یک سری بسیار مهم در برنامه­ریزی‌ها و طراحی‌های هیدرولوژیکی است. عوامل مختلفی مانند تغییرات آب و هوایی، کاربری زمین و پوشش گیاهی و نیز سایر فعالیت‌های تحت تأاثیر انسان می‌تواند بر ویژگی‌های این سری تاثیرگذار باشد، بنابراین برآورد تغییرات در ویژگی‌های آن یک تحقیق کاربردی است. هدف این مطالعه بررسی تغییرات در تابع توزیع احتمال تجربی (2EPDF) و تابع توزیع تجمعی تجربی (3ECDF) سری زمانی دبی اوج سالانه بر اساس یک رویکرد نوین است. برای این هدف از سه سری زمانی دبی اوج لحظه­ای سیلاب سالانه در ایستگاه­های هیدرومتری ارازکوسه، لزوره و تمر با طول دوره آماری 43 سال در استان گلستان استفاده شد. نتایج نشان ‌داد تغییرات برآورد شده در سری‌های مورد بررسی در کوانتایل­های بالایی روی داده است. همچنین مشخص است الگوی تغییرات نمودارهای EPDF و ECDF در طول دوره در سری‌های مورد بررسی متفاوت می‌باشد. نمودار ECDF انتهای دوره در ارازکوسه نسبت به ابتدای دوره تغییرات خاصی را نشان نمی‌دهد در حالی­که به ترتیب سری‌های تمر و لزوره تغییرات زیادی را درECDF  در سطوح بالای مقادیر دبی اوج سیلاب نشان می‌دهند. مقایسه EPDF های ابتدا و انتهای دوره نیز نشان می‌دهد دامنه این منحنی در سری ارازکوسه نسبتا ثابت اما در سری لزوره و تمر به طور محسوس افزایش یافته است. همچنین مقدار مد EPDF در هر سه سری در انتهای دوره نسبت به ابتدای دوره افزایش نشان می‌دهد. مقدار احتمال متناظر با دبی مد در سری ارازکوسه تغییرات محدود داشته در حالی­که در دو سری دیگر شاهد افزایش قابل توجه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Changes in Empirical Probability and Cumulative Distribution Function of Annual Maximum Instantaneous Flood Peak Discharge

نویسنده [English]

  • Meysam Salarijazi
Assistant Professor, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources., Gorgan., Iran
چکیده [English]

Annual maximum discharge time series is a very important series for hydrological planning and design. Various factors such as changes in climate, land use and land cover as well as other human affected activities can affect the characteristics of this series, therefore estimation of changes of its characteristics is an applied research. The objective of this study is evaluation of changes in empirical probability distribution function (EPDF) and the empirical cumulative distribution function (ECDF) of annual maximum discharge time series on the basis of a novel approach. For this purpose, three annual maximum instantaneous flood peak discharge time series belonging to Araz-Kouseh, Lazoureh and Tamer hydrometry stations with 43 years recorded data located in Golestan province are used. The results indicate that estimated changes in the studied series occurred in upper quantiles. It is clear the changes pattern of EPDF and ECDF curves were different during their periods. The Araz-Kouseh ECDF curve of last year did not show certain change in comparison with its first year curve while Tamer and Lazoureh series show a lot of changes in upper level of maximum discharge respectively. Comparison of first and last years EPDF curves show the domains of Araz-Kouseh EPDF curves are relatively constant but they experienced significant increase in Tamer and Lazoureh series. In addition the last year EPDF modes increase relative to the corresponding values in first year EPDF in all of three series. The probability values corresponding to the modes had limited changes for Araz-Kouseh series while experienced considerable increase for other two series.

کلیدواژه‌ها [English]

  • Distributional Changes
  • Empirical Cumulative Distribution Function (ECDF)
  • Empirical Probability Distribution Function (EPDF)
  • Flood Peak Discharge
Barbosa,S.M. 2008. Quantile trends in Baltic sea level. Geophysical Research Letters. 35.22: 1-6.
Barbosa,S.M., Scotto,M.G and Alonso,A.M. 2011. Summarising changes in air temperature over Central Europe by quantile regression and clustering. Natural Hazards and Earth System Sciences. 11.12: 3227-3233.
Beven,K.J., Almeida,S., Aspinall,W.P., Bates,P.D., Blazkova,S., Borgomeo,E and Stephenson,D.B. 2016. Epistemic uncertainties and natural hazard risk assessment–Part 2: Different natural hazard areas.
Brath,A., Montanari,A and Moretti,G. 2006. Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty).Journal of Hydrology. 324.1: 141-153.
Capra,A., Consoli,S and Scicolone,B. 2013. Long-term climatic variability in Calabria and effects on drought and agrometeorological parameters. Water Resources Management. 27.2: 601-617.
Crooks,S and Davies,H. 2001. Assessment of land use change in the Thames catchment and its effect on the flood regime of the river. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26.7: 583-591.
Das,P.K., Dutta,D., Sharma,J.R and Dadhwal,V.K. 2016. Trends and behaviour of meteorological drought (1901–2008) over Indian region using standardized precipitation–evapotranspiration index. International Journal of Climatology. 36.2: 909-916.
Gao,P., Mu,X.M., Wang,F and Li,R. 2011. Changes in stream flow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences. 15.1: 1-10.
Helsel,D.R., and Hirsch,R.M. 1992. Statistical methods in water resources. Elsevier, 522 pages.
Hooshmand,A., Salarijazi,M., Bahrami,M., Zahiri,J and Soleimani,S. 2013. Assessment of pan evaporation changes in South Western Iran. African Journal of Agricultural Research. 8.16:1449-1456.
Jagger,T.H and Elsner,J.B. 2009. Modeling tropical cyclone intensity with quantile regression. International Journal of Climatology. 29.10: 1351-1361.
Jhajharia,D., Shrivastava,S.K., Sarkar,D and Sarkar,S. 2009. Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agricultural and Forest Meteorology. 149.5: 763-770.
Kisi,O and Ay,M. 2014. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology. 513: 362-375.
Koenker,R and Bassett Jr,G. 1978. Regression quantiles. Econometrica: journal of the Econometric Society. 33-50.
Koenker,R. 2005. Quantile regression (No. 38). Cambridge university press.
Liu,M., Shen,Y., Zeng,Y., Liu,C. 2010. Trend in pan evaporation and its attribution over the past 50 years in China. Journal of Geographical Sciences. 20.4: 557-568.
Lopes,A.V., Chiang,J.C.H., Thompson,S.A and Dracup,J.A. 2016. Trend and uncertainty in spatial‐temporal patterns of hydrological droughts in the Amazon basin. Geophysical Research Letters. 43.7:3307-3316.
Loucks,D.P., Van Beek,E., Stedinger,J.R., Dijkman,J.P and Villars,M.T. 2005. Water resources systems planning and management: an introduction to methods, models and applications. Paris: Unesco.
Marofi,S., Soleymani,S., Salarijazi,M and Marofi,H. 2012. Watershed-wide trend analysis of temperature characteristics in Karun-Dez watershed, southwestern Iran. Theoretical and Applied Climatology. 110.1-2: 311-320.
Mazvimavi,D. 2010. Investigating changes over time of annual rainfall in Zimbabwe. Hydrology and Earth System Sciences. 14.12: 2671-2679.
McCuen,R.H. 2016. Modeling hydrologic change: statistical methods. CRC press. 448 pages.
Miao,C., Ni,J and Borthwick,A.G. 2010. Recent changes of water discharge and sediment load in the Yellow River basin, China. Progress in Physical Geography. 34.4: 541-561.
Mikkelson,K.M., Dickenson,E.R., Maxwell,R.M., McCray,J.E and Sharp,J.O. 2013. Water-quality impacts from climate-induced forest die-off. Nature Climate Change.3.3: 218-222.
Moazed,H., Salarijazi,M., Moradzadeh,M and Soleymani,S. 2012. Changes in rainfall characteristics in Southwestern Iran. African Journal of Agricultural Research. 7.18: 2835-2843.
Mondal,A., Kundu,S and Mukhopadhyay,A. 2012. Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and environmental Sciences, 2.1: 70-78.
Muhlbauer,A., Spichtinger,P and Lohmann,U. 2009. Application and comparison of robust linear regression methods for trend estimation. Journal of Applied Meteorology and Climatology.48.9:1961-1970.
Muzik,I. 2002. A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. Journal of Hydrology. 267.1: 65-73.
Naddeo,V., Scannapieco,D., Zarra,T and Belgiorno,V. 2013. River water quality assessment: Implementation of non-parametric tests for sampling frequency optimization. Land Use Policy. 30.1: 197-205.
Pieri,L., Rondini,D and Ventura,F. 2016. Changes in the rainfall–streamflow regimes related to climate change in a small catchment in Northern Italy.Theoretical and Applied Climatology: 1-13.
Prudhomme,C., Jakob,D and Svensson,C. 2003. Uncertainty and climate change impact on the flood regime of small UK catchments. Journal of hydrology. 277.1: 1-23.
Reynard,N.S., Prudhomme,C and Crooks,S.M. 2001. The flood characteristics of large UK rivers: potential effects of changing climate and land use. Climatic change. 48.2-3: 343-359.
Rheuban,J.E., Williamson,S., Costa,J.E., Glover,D.M., Jakuba,R.W., McCorkle,D.C and Doney,S.C. 2016. Spatial and temporal trends in summertime climate and water quality indicators in the coastal embayments of Buzzards Bay, Massachusetts. Biogeosciences.13.1: 253-265 .
Salarijazi,M., Akhond-Ali,A.M., Adib,A and Daneshkhah,A. 2012. Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, 7.32:4540-4552.
Sansigolo,C.A and Kayano,M.T. 2010. Trends of seasonal maximum and minimum temperatures and precipitation in Southern Brazil for the 1913-2006 period.Theoretical and Applied Climatology. 101.1-2: 209-216.
Shiau,J.T and Huang,W.H. 2015. Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression. Journal of Hydro-environment Research. 9.3: 368-380.
Shiau,J.T and Huang,W.H. 2015. Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression. Journal of Hydro-environment Research. 9.3: 368-380.
Tabari,H and Talaee,P.H. 2011. Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorology and Atmospheric Physics.111.3-4: 121-131.
Timofeev,A.A and Sterin,A.M. 2010. Using the quantile regression method to analyze changes in climate characteristics. Russian Meteorology and Hydrology. 35.5: 310-319.
Villarini,G., Smith,J.A., Baeck,M.L., Vitolo,R., Stephenson,D.B and Krajewski,W.F. 2011. On the frequency of heavy rainfall for the Midwest of the United States. Journal of Hydrology. 400.1: 103-120.
Villarini,G., Smith,J.A., Serinaldi,F and Ntelekos,A.A. 2011. Analyses of seasonal and annual maximum daily discharge records for central Europe. Journal of Hydrology. 399.3: 299-312.
Wang,H., Killick,R and Fu,X. 2014. Distributional change of monthly precipitation due to climate change: comprehensive examination of dataset in southeastern United States. Hydrological Processes. 28.20: 5212-5219.
Westra,S., Alexander,L.V and Zwiers,F.W. 2013. Global increasing trends in annual maximum daily precipitation. Journal of Climate. 26.11:3904-3918.
Yu,K., Lu,Z and Stander,J. 2003. Quantile regression: applications and current research areas. Journal of the Royal Statistical Society: Series D (The Statistician). 52.3: 331-350.