ارائه معادله عمومی جهت پیشروی آب در نوار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

جهت ارزیابی آبیاری نواری از داده­های پیش­روی آب در نوار استفاده می­گردد.با توجه به متغیر بودن نوع خاک و هم­چنین شرایط اولیه و مرزی در آبیاری نواری،سرعت پیش­روی آب در نوار­های مختلف بسیار متفاوت می­باشد. روش مقیاس­سازی به عنوان ابزاری جهت کاهش داده­های اندازه­گیری در مسایل آب و خاک مورد استفاده قرار می­گیرد.هدف ازاین پژوهش ارایه رابطه­ای یکتا و مستقل از شرایط اولیه و مرزی خاک، جهت پیش­روی آب در نوار با استفاده از مقیاس سازی است. برای این منظورآبیاری نواری با استفاده از مدل موج سینماتیک و کاربرد رابطه نفوذ فیلیپ دو جمله­ای برای مولفه­ی نفوذ، حل گردید. سپس با تعریف عوامل مقیاس که مفهوم فیزیکی داشتند اقدام به مقیاس­سازی آبیاری نواری برای مسیر پیش­روی گردید. از آنجا که منحنی­های پیش­روی مقیاس­شده به رابطه­ی مشخصی میل می­کردند در نتیجهرابطه­های توانی، نمایی و سهمی شکل جهت پیشرفت آب در نوار ارایه گردید. رابطه­های به دست آمده با استفاده از مقیاس­سازی با رابطه بیلان حجمی، برای 25 نوار مختلف مورد ارزیابی قرار گرفت.جهت ارزیابی از چهار شاخص آماری ضریب تبیین (R2)، توزیع نسبت به خط 45 درجه (λ)، درصد متوسط خطای پیش­بینی مدل (Er) و درصد متوسط خطای نسبی مدل (Ea) استفاده گردید. نتایج نشان داد مدل توانی با 893/0R2=، 003/1=λ، 9/0=Er و 76/13=Ea بهتر از دو مدل دیگر بدست آمده از مقیاس­سازی منحنی پیش­روی را پیش­بینی می­کند.در مقایسه با رابطه بیلان حجمی، رابطه توانی دارای دقت بیش­تر بود.شکل ساده رابطه و عدم وابستگی به نوع خاک موجببرتری روش ارایه گردیده نسبت به پژوهش­های پیشین در این رابطه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Providing general equation for the advance of the water at the border

نویسندگان [English]

  • Mohamad Mehdi Chari 1
  • Kamran Davari 2
  • Bizhan Ghahraman 2
  • Ali Naghi Ziaiei 3
1 PhD Student, Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Associate Professor Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

For evaluating border irrigation, it is needed to use advance data. Due to soil variability, as well as initial and boundary conditions in border irrigation, water advance rate varies considerably indifferent borders. In recent years, Scaling approach has been adopted as a means to reduce measurement data on water and soilissues.The aim of this study is to provide a unique equation, independent of initial and boundary conditions, for evaluation of water advance in border through scaling approach. For this purpose border irrigation was solved under the kinematic wave model and Philips 2-term equation for the infiltration. Physically-basedscaling factors were defined, attempted to scale the border irrigation for the advance trajectory. Scaling advance curves followed some certain quations, therefore, power, exponential, and parabolic equations were fitted for water advancing of trajectories. The equations obtained using the scaling and the volume balance equation were evaluated for 25 different borders. Four statistical indicators, i.e. coefficient of determination (R2), distribution around line of perfect aggrement, percentage of model prediction error (Er), and percentage of average relative error (Ea) were used.The results showed that the power model with R2 =0.893, λ=1.003, Er=0.9 and Ea=13.76 performed better than the other two models. In comparison with the volume balance equation, the power equation can be more accurate. Simple form and independent of the soil type equations presented are superior methods over previous researches in this field.

کلیدواژه‌ها [English]

  • Border irrigation
  • Infiltration
  • scaling
صادقی، م.،  قهرمان، ب.، داوری، ک. 1387. مقیاس­سازی و پیش‌بینی نیم­رخ رطوبت خاک در فاز توزیع مجدد. مجله آب و خاک. 22 .2: 417-431.
قهرمان، ب.، صادقی، م.، داوری، ک.، گهردوست منفرد، م.ر. 1390. مقیاس­بندی منحنی مشخصه رطوبتی خاک­های غیر متشابه. مجله پژوهش آب ایران. 9: 113-120
مهرابی،ف.، سپاسخواه،ع. 1392. مقیاس­بندی و بررسی تغییرات مکانی ویژگی­های نفوذ در خاک در مقیاس حوزه آبریز ( مطالعه موردی : دشت باجگاه). 14 .1: 13-32.
Alazba,A.A. 1999. Dimensionless advance curves for infiltration families.Agriculture Water Managament.41: 115-131.
Atchison,KT. 1973. Retragance coefficient and other data for a vegetated irrigation border.Unpublished M.S Thesis.University of Arizona. Tucson. USA.
Bautista,E., Schlegel,J., Strelkoff,T.S. 2012. WinSRFR 4.1, Software and User Manual USDA-ARS U.S. Arid Land Agricultural Research Center Maricopa. AZ USA.
Bautista,E., Strelkoff,T., Clemmens,A.J. 2012.Improved Surface Volume Estimates forSurface Irrigation Volume-Balance Calculations.Journal Irrigation and Drainage Engineering ASCE. 138:715-726.
Childs,J.L., Wallender,W and Hopmans,J.W. 1993. Spatial and seasonal variation of furrow irrigation.Journal Irrigation and Drainage Engineering ASCE.119.1: 74–90.
Clemmens,A.J. 1981.Evaluation of infiltration measurements for border irrigation.Agriculture Water Managament. 3: 251267.
Ebrahimian,H., Liaghat,A., Ghanbarian-Alavijeh,B and Abbasi,F. 2010. Evaluation of various quick methods for estimating furrowand border infiltration parameters.Irrigation Science. 28.6: 479-488.
Elliott,R.L., Walker,W.R and Skogerboe,G.V. 1983. Furrow irrigation advance rate: a dimensionless approach. Transaction ASAE. 26.6: 1725-1731.
Esfandiari,M., Maheshwari,B.L. 2001. Field evaluation of furrow irrigation models.Journal Agriculture Engineering Research.79.4: 459-479.
Gillies,M.H., Smith,R.J. 2005. Infiltration parameters from surface irrigation advance and run-off data.Irrigation Science. 24.1: 25-35.
Hillel,D., Elrick,D.E. 1990. Scaling in soil physics: principles and application.Soil Science Society of America SpecialPublication Number 25, Madison, Wisconsin, USA.
Jaynes,D.B., Clemmens,A.J. 1986. Accounting for spatially variable infiltration in border irrigation models.WaterResource Research.22 .8: 1257-1262.
Katopodes,N.D., Strelkoff,T. 1977. Dimensionless Solutions of Border Irrigation Advance.Journal Irrigation and Drainage Engineering ASCE. ASCE 103.4: 401-417.
Khatri,K.L., Smith,R.J. 2006. Real-time prediction of soil infiltration characteristicsfor the management of furrow irrigation.Irrigation Science. 25.1: 33-43.
Kosugi,K., Hopmans,J.W. 1998. Scaling water retention curves for soils with lognormal pore-size distribution.Soil Science Society of America Journal. 62:1496-1504.
Kozak,J., Ahuja,L.R.  2005. Scaling of infiltration and redistribution of water across soil textural classes.Soil Science Society of America Journal. 69.3:816-827.
Machiwal,D., Madan,K.,Mal,B.C. 2006. Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering. 95.4: 569-582.
McClymont,D.J., Smith,R.J. 1996 Infiltration parameters from optimization on furrow irrigation advance data. Irrigation Science 17.1:15-22.
Miller,E.E and Miller,R.D. 1956. Physical theory for capillary flow phenomena.Journal Applied Physics. 27: 324-332.
Navabian,M., Liaghat,A.M., Smith,R.J and Abbasi,F. 2009. Empirical functions for dependent variables in cutback furrow irrigation. IrrigationScience. 27:215-222.
Oyonarte,N.A., Mateos,L., Palomo,M.J. 2002. Infiltration variability in furrow irrigation.Journal Irrigation and Drainage Engineering ASCE.128.1:26-33.
Philip,J.R. 1957. The theory of infiltration—3: moisture profiles and relation to experiment. Soil Science. 84:163-178.
Ram,R.S.1969. Hydraulics of recession flow in border irrigation system.M.S. thesis.Indian Institute of Technology. Kharagpur, India.
Ram,R.S.1972. Comparison of infiltration measurement techniques.Journal Agriculture Engineering. India. 9.2: 67-75.
Ram,R. S and Lal,R. 1971. Recessionflow in border irrigation.Journal Agriculture Engineering India. 8.3: 62-70.
Ram,R.S., Singh,V.P. 1985. Application of kinematic wave equations to border irrigation design.Journal Agricultural Engineering Research.32:57-71.
Rasoulzadeh,A., Sepaskhah,A.R. 2003. Scaled Infiltration Equations for Furrow Irrigation.Biosystems Engineering. 86.3: 375-383.
Roth,R.L. 1974. Data for border irrigation models.Transactions of the ASAE. 17.1: 157-161.
Sadeghi,M., Ghahraman,B., Ziaei,A.N., Davary,K., Reichardt,K. 2012. Invariant Solutions of Richards Equation for Water Movement in Dissimilar Soils.Soil Science Society of America Journal.76.1: 1-9.
Sadeghi,M., Ghahraman,B., Davary,K., Hasheminia,S.M., Reichardt,K. 2011. Scaling to generalize a single solution of Richards equation for soil water redistribution.Science Agricultural. 68: 582-591.
Sadeghi,M.,Jones,S.B. 2012. Scaled Solutions to Coupled Soil-Water Flow and Solute Transport during the Redistribution Process.Vadose Zone Journal.11(4).
Sharma,M.L., Gander,G.A., Hunt,C.G. 1980. Spatial variability of  infiltration in a watershed. Journal of  Hydrology. 45: 122-101.
Shepard,J.S., Wallender,W.W., Hopmans, J.W. 1993 One method forestimating furrow infiltration. Transactions of the ASAE. 36.2:395-404.
Simmons,C.S., Nielsen,D.R., Biggar,J.W. 1979. Scaling of field-measured soil-water properties.Hilgardia. 47.4:77-174.
Smerdon,E.T., Blair,A.W., Reddell,D.L. 1988. Infiltration from irrigation advance. I: experimental.Journal Irrigation and Drainage Engineering ASCE.114:18-30.
Strelkoff,T., Clemmens,A.J. 1981. Dimensionless Stream Advance in Sloping Borders.Journal Irrigation and Drainage Engineering ASCE.107.4: 361-382.
Strelkoff,T., Clemmens,A.J. 1994. Dimensional analysis in surface irrigation.Irrigation Science. 15.2-3: 57-82
Strelkoff,T., Katopodes,N.D. 1977. Border Irrigation Hydraulics with Zero Inertia.Journal Irrigation and Drainage Engineering ASCE.103.3: 325-342.
Strelkoff,T., Shatanawi,M.R. 1984. Normalized graphs of border irrigation performance.Journal Irrigation and Drainage Engineering ASCE.110: 359-374.
Tuli,A., Kosugi,K., Hopmans,J.W. 2001. Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution.Advance Water Resource. 24: 677-688.
Upadhyaya,S.K., Raghuwanshi,N.S. 1999. Semiempirical infiltration equation for furrow irrigation systems.Journal Irrigation and Drainage Engineering ASCE. 125.4: 173-178.
Valiantzas,J.D., Aggelides,S., Sassalou,A. 2001. Furrow infiltration estimation from time to a single advance point. Agriculture Water Managament. 52:17-32
Vogel,T., Cislerova,M., Hopmans,J.W. 1991. Porous media with linearly hydraulic properties.Water Resource Research.27.10: 2735-2741.
Walker,W.R., Humpherys,A.S. 1983. Kinematic-Wave Furrow Irrigation Model.Journal Irrigation and Drainage Engineering ASCE.109(1R4):377-392.
Warrick,A.W., Mullen,G.J., Nielsen,D.R. 1977. Scaling of field measured hydraulic properties using a similar media concept. Water Resource Research. 13.2:355-362.
Warrick,A.W., Hussen,A.A. 1993. Scaling of Richards’ equation for infiltration and drainage.Soil Science Society of America Journal. 57: 15-18.
Warrick,A.W.,Nielsen,D.E. 1980. Spatial variability of soil physical properties in the field. Pp.319-344. In : D. I. Hillel (Ed). Aplication of soil physics.Academic press. New York.
Woolhiser,D.A., Liggett,J.A. 1967. Unsteady, one-dimensional frow over a plane-the rising hvdrograph.Water Resource Research. 3.3: 753-771.
Yitayew,M., Fangemeier,D.D. 1984. Dimensionless runoff curves for irrigation borders. Journal Irrigation and Drainage Engineering ASCE.110: 179-191.