مدلسازی آزمایشگاهی و عددی جریان درون حوضچه رسوبگیر گردابی با آب زلال و بررسی کارآیی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم مهندسی آب، سازه‌های آبی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار گروه مهندسی آب، دانشکده مهندسی کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، سازه‌های آبی دانشگاه فردوسی مشهد

چکیده

حوضچه رسوب­گیر گردابی یک سازه رسوب­گیر مداوم، کارآ برای حذف رسوبات بار بستر و بار معلق درشت دانه می‌باشند. در این مطالعه، آزمایشاتی در آزمایشگاه گروه مهندسی علوم آب دانشگاه فردوسی مشهد بر روی ستاپ حوضچه گردابی با جریان آب زلال انجام شد. شدت جریان در محدوده
8-22 لیتر در ثانیه بود. سرعت 3بعدی درون حوضچه با استفاده از ADV اندازه­گیری شد. میدان جریان با استفاده از معادلات ناویر- استوکس در حالت آرام (حل مستقیم با مش درشت) و با کاربرد مدل­های تلاطمی k-ε standard، k-ω و Smagorinsky حل شد. راندمان جریان خروجی به کل جریان ورودی تعیین، خطوط هم تراز آب ترسیم و سرعت مماسی اندازه­گیری شد. نسبت راندمان جریان خروجی به کل جریان ورودی برابر 75 تا 5/87 درصد اندازه­گیری شد. معادله پروفیل سطح آب و معادله سرعت مماسی با استفاده از آنالیز ابعادی و رگرسیون تعیین و رابطه سرعت با رابطه تجربی سایر پژوهشگران مقایسه شد. نتایج راندمان جریان خروجی و پروفیل سطح آب و سرعت مماسی محاسبه شده از مدل­های تلاطمی با نتایج آزمایشگاهی مقایسه شد و مدل Smagorinsky دارای هم­خوانی مناسبی با نتایج آزمایشگاهی بود و خطای نسبی مدل کم­تر از 3% بود. شکل­گیری نواحی گردابی آزاد و اجباری در مدل Smagorinsky مشابه نتایج آزمایشگاهی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Vortex Settling Basin Performance for Different Discharges by Experimental and Numerical Modeling

نویسندگان [English]

  • Neda Sheikh Rezazadeh Nikou 1
  • Ali Naghi Ziai 2
  • Hosein Ansari 3
1 PhD Candidate of Water Science and Engineering, Hydraulic Structural Engineering, Ferdowsi University of Mashhad
2 Associate Professor, Department. of Water Science and Engineering., Ferdowsi University of Mashhad, Mashhad, Iran
3 Professor, Department. of Water Science and Engineering., Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

A vortex settling basin (VSB) is an efficient continuous flushing structureto remove bed loads and coarse suspended loads. In present study, experiments were conducted in Hydraulics lab of Water Science and Engineeing Departmentat Ferdowsi University of Mashhad on a vortex settling basin model with clear water. The flow rate varied in the range of 8-22 L/s‎‎.Velocity was measured in three dimensions within the chamber using ADV. The flow field iscalculated using 3D Reynolds-averaged N–S equations, laminar case (coarse DNS) and turbulent models including standard k-ε, k-ω and Smagorinsky models. The abstraction ratio was determined, water surface counters were depicted and tangential velocity was calculated. The abstraction ratio was in range of 75-87.5%.Flow depth and tangential velocity formula were determined based on dimensional analysis and linear regression. The obtained empirical equations werecompared withother extant empirical equations. Results of turbulent models including abstraction ratio, water surface profile and tangential velocity were compared to the experimental data. Smagorinsky model showed better agreement with the experimental data and the relative error of the model was less than 3%. The free and forced vortex regions in Smagorinsky model was more similar to those in experimental data.

کلیدواژه‌ها [English]

  • Dimensional analysis
  • Water surface profile
  • Abstraction ratio
  • Velocity
  • Turbulent models
Anwar,HO. 1969. Turbulent flow in a vortex. Journal of Hydraulic Research, vol. 7, pp. 1-29.
Athar,M., Kothyari,UC., Garde,RJ. 2002. Sediment removal efficiency of vortex chamber type sediment extractor. Journal of Hydraulic Engineering, vol. 128, pp. 1051-1059.
Athar,M., Kothyari,UC., Garde,RJ. 2003. Distribution of sediment concentration in the vortex chamber type sediment extractor. Journal of Hydraulic Research, vol. 41, pp. 427-438.
Cecen,K., Bayazit,M. 1975. Some laboratory studies of sediment controlling structures. Processing 9th Congress ICID, Moscow, Soviet Union. 107-111.
Chapokpour,J.. Farhoudi,J., Amiri Tokaldani,E., Majedi-Asl,M. 2011. Flow Visualization in Vortex Chamber.  Journal of Civil Engineering and Urbanism. 2.1: 26-34.
Chapokpour,J., Ghasemzadeh,F., Farhoudi,J. 2012. The Numerical Investigation on Vortex Flow Behavior Using FLOW-3D. Iranian journal of Energy and Enviroment. 1: 105-113.
Curi,KV., Esen,H., Velioglu,S.G. 1979. Vortex type solid liquid separator. Journal of Progress Water Tchnology .7: 183-190.
Derksen,J.J., Sundaresan,S and Akker,H.E.A. 2008. Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators. AIChE Journal. 54.4:872-885
Keshavarzi,A.R and Gheisi,A.R. 2006. Trap efficiency of vortex settling basin for exclusion of fine suspended particles in irrigation canals. ASCE Journal of Irrigation and Drainage engineering. 55.4: 419-434.
Mashuri,DA. 1986. Modeling of a vortex settling basin for primary clarification of water. PhD Thesis Tampere University of Technology, Tampere, Finland.
Mikulcic,H., Vujanovi, M., Sami Ashhab,M and Dui,N. 2014. Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone. Journal of Energy. 75: 89-96.
Novak,P and Cabelk,J. 1981. Models in Hydraulic Engineering. 460pp.
Paul,T.C. 1988. “Designing circulation chamber sediment extracter,” in Report No. OD 91, Hydraulic Research Limited, Wallingford, UK.
Paul,T.C., Sayal,S.K., Sakhanja,V.S and Dhillon,G.S. 1991. Vortex set tling chamber design considerations. Journal of Hydraulic Engineering. 117.2: 172–189.
Piomelli,U., Ferziger,J., Moin,P. Kim,J. 1989. New approximate boundary-conditions for large eddy simulations of wall-bounded flows. Physics of Fluids A-Fluid Dynamics. 1:1061–1068.
Rodi,W., Constantinescu,G and Stoesser,T. 2013. Large-Eddy Simulation in Hydraulics. CRC Press/Balkema, P.O. Box 11320,2301 EH Leiden, The Netherlands, 1th edition, p. 25-27.
Talbi,K., Nemouchi,Z., Donnot,A and Belghar,N. 2009. An Experimental Study and a Numerical Simulation of theTurbulent Flow under the Vortex Finder of a CycloneSeparator. Journal of Applied Fluid Mechanics, vol. 4(1), pp. 69-75.
Utikar,R., Darmawan,N., TadeL,M., Li,Q., Evans,G., Glenny,M and Pareek,V. 2010. Hydrodynamic Simulation of Cyclone Separators. Journal of Computational Fluid Dynamics. Pp. 241-266.
Vatistas,G.H. 1989. Analysis of fine particle concentration in a combined vortex. Journal of Hydraulic Resarch. 27.3: 417-427.
Wilcox,D.C. 1993. Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, CA.
Ziaei,A.N. 2007. Generalized three-dimensional curvilinear numerical modeling of laminar and turbulent free-surface flows in a vortex settling basin. PhD Thesis, Shiraz University, Shiraz, Iran.