بررسی عملکرد روشهای کلاسیک و هوش مصنوعی در تخمین ضریب زبری در پیچانرودها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه آب دانشکده عمران دانشگاه تبریز

2 دانشجوی دکتری عمران مهندسی و مدیریت منابع آب دانشگاه تبریز

چکیده

برآورد دقیق ضریب زبری رودخانه­ها همواره از مسایل مهم و اساسی در مدل‌سازی هیدرولیک رودها می­باشد. در تحقیق کنونی از روش­های هوشمند ماشین­بردار پشتیبان (SVM) و سیستم استنتاج تطبیقی عصبی- فازی (ANFIS) جهت تخمین زبری هیدرولیکی پیچان­رودها استفاده گردید و تأثیر پارامترهای مختلفی از قبیل شیب کانال، میزان سینوسی بودن کانال و هم­چنین پارامترهای هیدرولیکی مانند عدد رینولدز جریان در تعیین زبری این نوع کانال­ها مورد بررسی قرار گرفت. از طرف دیگر، نتایج حاصل با روش­های کلاسیک مقایسه گردید. جهت مدل­سازی ضریب زبری از دو سری داده آزمایشگاهی مربوط به کانال­های سینوسی­شکل استفاده گردید. نتایج حاصله نشان­داد که روش­های هوشمند SVM و ANFIS در تخمین ضریب زبری مانینگ در رودخانه­های طبیعی نسبت به فرمول‌های نیمه­تجربی دقیق­تر و قابل‌اعتمادتر می­باشند. ملاحظه گردید که در تخمین ضریب زبری مانینگ مدل با پارامترهای ورودیα (ضریب شکل)، Sr(ضریب مارپیچی)، S0(شیب کانال) و Re(عدد رینولدز) منجر به جواب­های دقیق­تری می­گردد. نتایج به‌دست ‌آمده نشان داد که در تخمین ضریب زبری در پیچان­رودها، تأثیر پارامتر ضریب شکل در افزایش دقت مدل­ها از ضریب سینوسی بیش­تر است. هم­چنین نتایج تحلیل حساسیت نشان داد که شیب کانال تأثیرگذارترین پارامتر در تخمین ضریب زبری در پیچان­رودها است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Performance of Classical and Artificial Intelligence Approaches in Prediction of Roughness Coefficient in Meanders

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • Roghayeh Ghasempour 2
1 Associate Professor, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
2 Ph.D. student, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Accurate prediction of the river's roughness coefficient is always one of the most important and substantial issues in the hydraulic modeling of open channels. In the current research, the Support Vectore Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) intelligent approaches were used to estimate the hydraulic roughness of meandering rivers, and the impacts of different variables including: channel slope, channel sinuosity and also, hydraulic parameters such as Reynolds number on prediction of the roughness coefficient in these types of channels were investigated. On the other hand, the obtained results were compared with classical methods. In order to model the roughness coefficient, two experimental data series related to the sinusoidal shaped channels were used. The obtained results showed that the SVM and ANFIS intelligent methods are more accurate and reliable in estimating the Manning roughness coefficient in natural rivers than semi-experimental formulas. It was observed that in estimation of the Manning roughness coefficient, the model with input variables of α (shape factor), Sr (sinusoidal coefficient), S0 (channel slope) and Re (Reynolds number) leads to the more accurate results. The results showed that in estimating the roughness coefficient in the meandering rivers, the effect of the shape factor on increasing the accuracy of the models is more than the sinusoidal coefficient. Also, the results of sensitivity analysis indicated that the channel slope is the most effective parameter in estimating the roughness coefficient in the meandering rivers.

کلیدواژه‌ها [English]

  • ANFIS
  • Artificial intelligence approaches
  • Manning's coefficient
  • River
الهام روشنی،ر.، حسین­زاده دلیر،ع.، فرسادی­زاده،د و سلماسی،ف. 1395. ارزیابی مقاومت جریان در رودخانه‌های رسوبی با فرم بستر ریپل در شرایط هیدرولیکی مختلف. نشریه دانش آب و خاک. 25 .2. 3: 63-73.

حسین­زاده،م. 1383. پهنه‌بندی سیل با استفاده از HEC-RAS در محیط سیستم اطلاعات جغرافیایی (رودخانه لاین­سو). پایان‌نامه کارشناسی ارشد، گروه آبیاری دانشکده علوم کشاورزی ساری.

عباسی،ع.ا و ملک­نژاد،م. 1391. بررسی عوامل موثر بر ضریب مانینگ در رودخانه‌ها و ارایه­ی رابطه­ای جدید جهت تخمین آن (مطالعه‌ی موردی: رودخانه‌ی فریزی). نشریه آب و خاک (علوم و صنایع کشاورزی). 26 .5: 1308-1317.

Banzhaf,W., Nordin,P., Keller,P.Eand Francone,F.D. 1998. Genetic Programming. Morgan Kaufmann, San Francisco, CA, 512p.

Cowan,W.L. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering. 37: 473–475.

Jang,J.R. 1993. ANFIS: adaptive network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics. 23.3: 665-685.

Jarrett,R.D. 1984. Hydraulics of high gradient streams. Journal of Hydraulic Engineering. ASCE. 110: 1519–1539.

Jena,S. 2006. Stage-discharge relationship in simple meandering channels. Master’s Thesis, Indian Institute of Technology (IIT), Kharagpur, India.

Khatua,K.K., Patra,K and Nayak,C.P. 2011. Meandering effect for evaluation of roughness coefficients in open channel flow. In Sixth International Conference on River Basin Management, 15th-17th September, Algarve-Portugal, 8 page.

Kisi,O., Shiri,J and Tombul,M. 2013. Modeling rain fall-runoff process using soft computing techniques. Journal of Computers and Geosciences. 51: 108-117.

Lan,Y. 2014. Forecasting performance of support vector machine for the Poyang Lake's water level. Journal of Water Science and Thecnology. 70.9: 1488-1495.

Moharana,S., Khatua,K.K and Sahu,M. 2013. Friction factor of a meandering open channel flow. River Basin Management. 172: 75-86.

Najafzadeh,M., Etemad-Shahidi,A and Lim,S.Y. 2016. Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering. 111: 128-135.

Patra,K.C and Khatua,K.K. 2006. Selection of interface plane in the assessment of discharge in two stage meandering and straight compound channels. In proceedings of the international conference on fluvial hydraulics. 8 Sep, pp. 379-387.

Roushangar,K., Ghasempour,R. 2017. Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Water Science and Technology: Water Supply. 17.2: 537-551.

Roushangar,K., Valizadeh,R., Ghasempour,R. 2017. Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM. Water Science and Technology. 76.7: 1614-1628.

Roushangar,K., Alami,M.T and Saghebian,S.M. 2018. Modeling open channel flow resistance with dune bedform via heuristic and nonlinear approaches. Journal of Hydroinformatics. 20.2: 356-75.

Sahu,M and Khatua,K.K. 2012. Prediction of entrance length for low Reynolds number flow in pipe using neuro-fuzzy inference system. Expert Systems with Applications. 39: 4545–4557.

Shiono,K., Al-Romaih,J. S and Knight,D.W.1999. Stage-discharge assessment in compound meandering channels. Journal of Hydraulic Engineering. 125.1: 66–77.

Shiri,J., Dierickx,W., Pour-Ali Baba,A., Neamati,S. and Ghorbani,M.A. 2011. Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN). Hydrology Research. 42.6: 491-502.

Tayfur,G., Ozdemir,S and Singh,V.P. 2003. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advanced Water Resource. 26: 1249–1256.

Vapnik,V. 1995. The Nature of Statistical Learning Theory. Data Mining and Knowledge Discovery. Springer Verlag, New York. 47p.

Willetts,B.B and Hardwick,S.R.I. 1993. Stage dependency for overbank flow in meandering channels. Willetts, B.B. and Hardwick, R.I., 1993. Stage dependency for overbank flow in meandering channels. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy. 101: 45–54.

Yang,K., Cao,S and Liu,X. 2007. Flow resistance and its prediction methods in compound channels. Acta Mechanic Sinica. 21: 353-361.

Zeng,Y.H., Guymer,I., Spence,K.J andHuai,W.X. 2010. Application of analytical solutions in trapezoidal compound channel flow. River Research and Applications. 28.1: 53-61.