ارزیابی مدل انتشار نمک دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

4 استادیار گروه مکانیک، دانشکده مکانیک، دانشگاه تبریز

چکیده

در این مطالعه جهت ارایه مدل انتشار زمانی و مکانی نمک از تونل باد استفاده گردید. مدل رگرسیونی به­دست آمده از داده­های آزمایش تونل باد روی نمک دریاچه ارومیه با معادله تجربی چپیل مورد بررسی و ارزیابی قرار گرفت. در این آزمایش از چهار متغیر که عبارتند از سرعت باد، فاصله از منبع نمکی، مدت زمان وزش باد و شوری که در آن شوری (متغیر وابسته به سه متغیر)، استفاده شد. مقادیر ضریب تبیین، متوسط میانگین مربعات خطا و متوسط خطای نسبی بین داده‌های شوری مشاهداتی و محاسباتی به‌ترتیب 96/0 ، 12/79 و 1065/0 به‌دست آمد. با توجه به معیارهای ارزیابی فوق می‌توان نتیجه گرفت که دقت مدل رگرسیونی ارایه شده جهت ارزیابی انتقال گرد نمک در زمان‌ها و فواصل مختلف و به­ازای سرعت‌های مختلف باد بسیارخوب است. داده­های شوری حاصل از آزمایش با تبدیل آن­ها به جرم نمک انتقالی با استفاده از آزمایش توزین، که در متن مقاله توضیح داده شده است، در معادله چپیل جای­گذاری شدند و مقادیر ضریب تبیین، متوسط میانگین مربعات خطا و متوسط خطای نسبی بین داده‌های جرم نمک مشاهداتی و محاسباتی به‌ترتیب 70/0 ، 04/0 و 4359/63 به‌دست آمدند. با توجه به معیارهای ارزیابی به‌دست آمده می­توان با قبول مقداری خطا، معادله ارایه شده از طریق داده­های آزمایشگاهی را که با معادله چپیل ارزیابی گردید در مقیاس بزرگ­تر مورد استفاده قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Salt Emission Modelof Urmia Lake

نویسندگان [English]

  • Maryam Abdolahzadeh 1
  • Ahmad Fakheri-Fard 2
  • Yaghoub Dinpashoh 3
  • Moharam Jafari 4
1 PhD Candidate, Department. of Water Engineering, Univ. of Tabriz, Iran
2 Professor, Department. of Water Engineering, Univ. of Tabriz, Iran
3 Assoc. Professor., Department. of Water Engineering, Univ. of Tabriz, Iran
4 Assist. Professor., Department. of Mechanic Engineering, Univ. of Tabriz, Iran
چکیده [English]

In this study, a wind tunnel was used to provide a spatial and temporal model of salt emission. Obtainedregression model from wind tunnel test data on the salt of Urmia Lake evaluated with the empirical Chepil equation. In this experiment, four variables were used: wind speed, distance from the salt source, duration of wind blowing and Salinity (EC), where the variation of EC is dependent on the other three variables. The values of coefficient of determination, root mean square error and relative error between the observational and computational data of regression model are 0.96, 79.12 µs/m and 0.1065 respectively. According to the evaluation criteria, it can be concluded that the accuracy of the proposed regression model is very good for evaluating the salt transfer at different times and distances and various wind speeds. The obtained salinity data from the experiment were turned to salt mass using weighing test, which is explained in the text of the paper, and were placed in the Chepil equation. The values of coefficient of determination, root mean square error and relative error between the observational and computational data are 0.70, 0.04 kg and 63.4359 respectively. According to the obtained evaluation criteria, we can use the suggested equation by experimental data, which was evaluated by Chepil equation on a larger scale by accepting some errors.

کلیدواژه‌ها [English]

  • Salinity
  • Salt mass
  • Urmia Lake
  • Weighing
  • Wind tunnel
احمدی،ح. 1387. ژئومورفولوژی کاربردی، جلد دوم: بیابان- فرسایش بادی. انتشارات دانشگاه تهران، 706 صفحه.

اختصاصی،م.ر. 1372. تهیه نقشه حساسیت به فرسایش بادی اراضی دشت یزد به کمک دستگاه سنجش فرسایش بادی. پایان­نامه کارشناسی ارشد، دانشکده منابع طبیعی دانشگاه تهران، 237 صفحه.

حسینی،م و صولتی‌فر،س. 1388. تدوین دانش فنی استحصال سدیم سولفات از آب دریاچه اورمیه به روش غیرتبخیری. مجله اندیشه علوم- شیمی کاربردی. 12 .4: 31-23.

رسول‌زاده،س و بزرگ‌ حداد،ا. 1387. مقایسه شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش‌بینی میزان آبدهی مخزن سد کرج. سومین کنفرانس مدیریت منابع آب ایران، 23 تا 25 مهرماه، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز.

رفاهی،ح. 1378. فرسایش بادی و کنترل آن. انتشارات دانشگاه تهران، 320 صفحه.

Bryan,R.B. 1968. The development, use and efficiency of indices of soil erodibility. Geoderma - Elsevier Publishing. 2.1: 5-26.

Chepil,W.S and Milne,R.A. 1941. Wind erosion in relation to roughness of the surface. Soil sciences. 52: 417-433.

Chepil,W.S. 1985. Soil conditions that influence wind erosion. U.S. Department of Agriculture, ARS, Technical Bulletin Washington, D.C. No. 1185. 40p.

Dong,X., Fu,J.S., Huang,K., Tong,D and Zhuang,G. 2016. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia. Atmospheric Chemistry Physics. 16:8157-8180.

Draxler,R.R., Gillette,D.A and Kirkpatrick,J.S. 2001. Estimating PM10 concentrations from dust storms in Iraq, Kuwait, and Saudi Arabia. Atmosphere Environment. 35:4315–4330.

Feng,G and Sharratt,B. 2007. Scaling from field to region for wind erosion prediction using WEPS and GIS. Journal of Soil Water Conservation. 62.5: 321–328.

Gill,T.E., Warren,A and Stout,J.E. 2007. Bibliography of Aeolian Research. Available online at: http://www.lbk.ars.usda.gov/wewc/biblio/bar.htm.

Groot Zwaaftink,C.D., Arnalds,Ó., Dagsson-Waldhauserova,P., Eckhardt,S., Prospero,J.M and Stohl,A. 2017. Temporal and spatial variability of Icelandic dust emissions and atmospheric transport, Atmospheric Chemistry Physics. 17:10865-10878.

Hagen,L.J. 1991. A wind erosion prediction system to meet user needs. Journal of Soil Water Conservation. 4.2: 105–111.

Hagen,L.J. 2004. Evaluation of the wind erosion prediction system (WEPS) erosion sub model on cropland fields. Environmental Modeling and Software. 19: 171-176.

Hagen,L.J. 2010. Erosion by Wind: Modeling. Wind Erosion Research Unit, USDA-ARS, GMPRC, Manhattan, Kansas, U.S.A. Encyclopedia of Soil Science . 1-4.

He,J., Cai,Q and Cao,W. 2013. Wind tunnel study of multiple factors affecting wind erosion from cropland in Agro- pastoral area of Inner Mongolia. China. Journal of Mountain Sciences. 10: 68-74.

Lu,H and Shao,Y. 2001. Toward quantitative prediction of dust storms: an integrated wind erosion modeling system and its applications. Environmental Modeling and Software. 16: 233-249.

Raupach,M.R and Lu,H. 2004. Representation of land-surface processes in Aeolian transport models. Environmental Modeling Software. 19: 93–112.

Rawls,W.J., Gish,T.J and Brakensiek,D.L. 1991. Estimating soil water retention from soil physical properties and characteristics. Advances in Soil Science. 9: 213–234.

Shao,Y. 2000. Physics and Modeling of Wind Erosion. Kluwer Academic Publishers: Dordrecht. 2: 456-

Wagner,L.E and Hagen,L.J. 1999. Application of WEPS generated soil loss components to assess off-site impacts. In Sustaining the Global Farm, proceeding of 10th International Soil Conservation Organization Conference, West Lafayette, IN, May 24-29, Stott DE, Mohtar RH, Steinhardt GC, Purdue University, West Lafayette, IN. 2001: 935-939.

Werner,M., Tegen,I., Harison,S.P., Kohfeld,K.E., Prentice,I.C., Balkanski,Y., Rodhe,H and Roelandt,C. 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. Journal of Geophysical Research. 107.24: 4744–4763.

Zhang,J., Shao,Y and Hung,N. 2014. Measurements of dust deposition velocity in a wind- tunnel experiment. Atmospheric Chemistry and Physics. 14: 8869- 8882.

Zhou,C.H., Gong,S.L and Zhang,X.Y. 2008. Development and evaluation of an operation SDS forecasting system for East Asia: cauace/dust. Atmospheric Chemistry and Physics. 8: 787–798.

Zobeck,T.M., Parker,N.C., Haskell,S and Guoding,K. 2000. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agricultural Ecosystem and Environment. 82.1: 247–259.