کاربرد رگرسیون چندک در تحلیل منحنی سنجه بار رسوب معلق

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

 روش منحنی سنجه رسوب پرکاربردترین برای بار رسوب معلق رودخانه است که با استفاده از روش رگرسیون معمولی حداقل مربعات ارتباطبینمیانگین شرطی بار معلق رسوب و دبی جریان را نشان می‌دهد و برای برآورد بار معلق رسوب به عنوان تابعی از دبی جریان رودخانه به کار گرفته می‌شود. مدل رگرسیون معمولی حداقل مربعات به داده­های پرت حساس است و زمانی که پیش فرض­های مرتبط با تحلیل باقیمانده‌ها برقرار نباشند قابل پذیرش نیست. رگرسیون چندک (کوانتایل) یک روش آماری است که می‌تواند برای غلبه بر این محدودیت‌ها در تحلیل منحنی سنجه رسوب به کار گرفته شود. در این مطالعه با استفاده از داده­های ایستگاه هیدرومتری النگ­دره در استان گلستان (دوره ثبت شده سال­های 1380-1366) روش رگرسیون کوانتایل در برآورد منحنی سنجه رسوب به کار گرفته شد و نتایج با کاربرد روش متداول رگرسیون معمولی حداقل مربعات مقایسه گردید. نتایج نشان می‌دهد کاربرد رگرسیون معمولی حداقل مربعات در تحلیل منحنی سنجه رسوب منجر به برآورد اریب شده است در حالی­که رگرسیون کوانتایل بدون داشتن مفروضات محدود کننده رگرسیون معمولی حداقل مربعات خطا، می‌تواند به شکل مناسبی تأثیر دبی جریان را در کوانتایل­های مختلف توزیع بار رسوب معلق به ویژه در کوانتایل‌های ابتدایی و انتهایی نشان دهد. به علاوه مشخص گردید که بزرگی تأثیر دبی جریان بر، بار رسوب معلق به ترتیب متعلق به کوانتایل‌های بالایی، پایینی و میانی بار رسوب معلق می‌باشد و با افزایش دبی جریان رودخانه داده­های بار رسوب معلق به مقدار بیش­تری به سمت راست چولگی نشان می‌دهند. همچنین از مفهوم رگرسیون کوانتایل می‌توان به عنوان یک ابزار کاربردی بسیار مهم برای استخراج تابع چگالی احتمال و تابع توزیع تجمعی بار رسوب معلق به ازای مقادیر مشخص دبی جریان ارایه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Quantile Regression in Analysis if Suspended Sediment Load Rating Curve

نویسنده [English]

  • Meysam Salarijazi
Assistant Professor, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources., Gorgan., Iran
چکیده [English]

The sediment rating curve is the most widely used method to estimate river suspended sediment load that shows the relation between conditional mean of suspended sediment load and river discharge using Ordinary Least Square (OLS) regression and is be applied to estimate suspended sediment load as a function of the river discharge. The OLS regression model is sensitive to outliers and when its assumptions including assumptions related to the residuals analysis are not satisfied, is not acceptable. Quantile regression is a statistical method that can be used to overcome these limitations in sediment rating curve analysis. In this study, quantile regression method was used to estimate sediment rating curve using data from Alang-Darreh hydrometry station in Golestan province (recorded period years 1987-2001) and the results were compared with the conventional OLS regression method. The results show that application of OLS regression in sediment rating curve analysis led to bias estimation while quantile regression without OLS regression’s limiting assumptions can be appropriately show the effect of river discharge on different quantiles of suspended sediment load distributions especially in upper and lower tail. In addition, it was found that a the magnitude of impact of river discharge belonging to upper, lower and central quantiles of suspended sediment load respectively and with increase in river discharge, the suspended sediment load show more skewness to the right. Moreover, the quantile regression concept is presented as a very important tool to extract the probability density and cumulative distribution functions of suspended sediment load for specific value of river discharge.

کلیدواژه‌ها [English]

  • Ordinary Least Square Regression
  • Sediment rating curve
  • quantile regression
انصاری،م،ت.، بامنی مقدم،م.، خوش­گویان­فرد،ع.، سام آرام،ع. 1385. کاربرد رگرسیون چندک در تحلیل سلامت روانی. رفاه اجتماعی. 5.20: 49-60.  
کالوندی،س،م.، خداشناس،س،م.، قهرمان،ب.، طهماسبی،ر.، بوستانی،آ. 1389.آنالیز روش­های مختلف منحنی سنجه در برآورد رسوب ورودی به سدها (مطالعه موردی: سد دوستی). مهندسی آبیاری و آب. 1.1: 10-20.
کیا،ع.، عمادی،ع. 1392. مقایسه روش­های مختلف رگرسیون آماری در برآورد بار رسوب معلق درازمدت سالانه (مطالعه موردی:بابل­رود). مدیریت حوضه و آبخیز. 4.8: 27-15. 
Afan,H.A., El-Shafie,A., Yaseen,Z.M., Hameed,M.M., Mohtar,W.H.M.W., Hussain,A. 2015. ANN based sediment prediction model utilizing different input scenarios. Water Resources Management.29.4: 1231-1245.
Alagidede,P., Panagiotidis,T. 2012. Stock returns and inflation: Evidence from quantile regressions. Economics Letters. 117.1: 283-286.
Alp,M., Cigizoglu,H.K. 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorologicaldata.EnvironmentalModelling and Software.22.1: 2-13.
Asselman,N.E.M. 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology. 234.3: 228-248.
Austin,M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological modeling. 200.1: 1-19.
Aytek,A., Kisi,O. 2008.A genetic programming approach to suspended sediment modelling. Journal of Hydrology. 351.3: 288-298.
Barbosa,S.M., Scotto,M.G., Alonso,A.M. 2011.Summarising changes in air temperature over Central Europe by quantile regression and clustering. Natural Hazards and Earth System Sciences. 11.12: 3227-3233.
Bjrnar Bremnes,J. 2004. Probabilistic forecasts of precipitation in terms of quantiles using NWP model output.Monthly Weather Review. 132.1: 338-347.
Cade,B.S., Noon,B.R. 2003.A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment. 1.8: 412-420.
Cimen,M. 2008.Estimation of daily suspended sediments using support vector machines. Hydrological Sciences Journal. 53.3: 656-666.
Cohn,T.A., Caulder,D.L., Gilroy,E.J., Zynjuk,L.D., Summers,R.M. 1992. The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research. 28.9: 2353-2363.
Cohn,T.A., DeLong,L.L., Gilroy,E.J., Hirsch,R.M., Wells,D.K. 1989. Estimating constituent loads. Water Resources Research.25.5:937-942.
Cozzoli,F., Bouma,T.J., Ysebaert,T., Herman,P.M.J. 2013. Application of non-linear quantile regression to macrozoobenthic species distribution modelling: comparing two contrasting basins. Marine Ecology Progress Series. 475: 119-133.
Eide,E., Showalter,M.H. 1998. The effect of school quality on student performance: A quantile regression approach. Economics letters. 58.3: 345-350.
Ferguson,R.I. 1986. River loads underestimated by rating curves. Water Resources Research. 22.1: 74-76.
Gaglianone,W.P., Lima,L.R., Linton,O., Smith,D.R. 2012.Evaluating value-at-risk models via quantile regression. Journal of Business and Economic Statistics. 29.1: 150-160.
Guven,A., Kisi,OÖ. 2011.Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water resources management. 25.2: 691-704.
Hicks,D.M., Gomez,B., Trustrum,N.A. 2000. Erosion thresholds and suspended sediment yields, Waipaoa River basin, New Zealand. Water Resources Research. 36.4: 1129-1142.
Hirschi,M., Seneviratne,S.I., Alexandrov,V., Boberg,F., Boroneant,C., Christensen,O.B., Stepanek,P. 2011. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience. 4.1:17-21.
Huang,M.Y.F., Montgomery,D.R. 2013. Altered regional sediment transport regime after a large typhoon, southern Taiwan.Geology.41.12: 1223-1226.
Jagger,T.H., Elsner,J.B. 2009.Modeling tropical cyclone intensity with quantile regression. International Journal of Climatology. 29.10: 1351-1361.
Jagger,T.H., Elsner,J.B. 2009.Modeling tropical cyclone intensity with quantile regression. International Journal of Climatology. 29.10: 1351-1361.
Jain,S.K. 2001. Development of integrated sediment rating curves using ANNs. Journal of hydraulic engineering. 127.1: 30-37.
Kao,S., Lee,T., Milliman,J.D. 2005. Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences.16.3: 653.
Kii,OÖ. 2004. Daily suspended sediment modelling using a fuzzy differential evolution approach/Mod, lisationjournalière des matières en suspension par uneapproched’évolutiondifférentiellefloue. Hydrological sciences journal.49.1: 183-197.
Kisi,O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approaches neurofloueset à base de réseau de neurones. Hydrological Sciences Journal. 50.4: 683-696.
Kitsikoudis,V., Sidiropoulos,E., Hrissanthou,V. 2014. Machine learning utilization for bed load transport in gravel-bed rivers. Water resources management. 28.11: 3727-3743.
Koenker,R. 2005. Quantile regression (No. 38).Cambridge university press.
Krishnaswamy,J., Richter,D.D., Halpin,P.N., Hofmockel,M.S. 2001. Spatial patterns of suspended sediment yields in a humid tropical watershed in Costa Rica. Hydrological Processes. 15.12: 2237-2257.
Lafdani,E.K., Nia,A.M., Ahmadi,A. 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines.Journal of Hydrology. 478: 50-62.
Lohani,A.K., Goel,N.K., Bhatia,K.S. 2007.Deriving stage–discharge–sediment concentration relationships using fuzzy logic. Hydrological Sciences Journal. 52.4: 793-807.
McBean,E.A., Al-Nassri,S. 1988. Uncertainty in suspended sediment transport curves. Journal of Hydraulic Engineering. 114.1: 63-74.
Meligkotsidou,L., Vrontos,I.D., Vrontos,S.D. 2009.Quantile regression analysis of hedge fund strategies. Journal of Empirical Finance. 16.2: 264-279.
Morehead,M.D., Syvitski,J.P., Hutton,E.W., Peckham,S.D. 2003.Modeling the temporal variability in the flux of sediment from ungauged river basins.Global and Planetary Change.39.1: 95-110.
Nagy,H.M., Watanabe,K.A.N.D., Hirano,M. 2002. Prediction of sediment load concentration in rivers using artificial neural network model.Journal of Hydraulic Engineering. 128.6: 588-595.
Partal,T., Cigizoglu,H.K. 2008.Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. Journal of hydrology. 358.3: 317-331.
Phillips,J.M., Webb,B.W., Walling,D.E., Leeks,G.J.L. 1999.Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological processes. 13.7: 1035-1050.
Rai,R.K., Mathur,B.S. 2008.Event-based sediment yield modeling using artificial neural network. Water Resources Management. 22.4: 423-441.
Salarijazi,M., Abdolhosseini,M., Ghorbani,Kh., Eslamian,S. 2016. Evaluation of Quasi-Maximum Likelihood and Smearing Estimator to Improve Sediment Rating Curve Estimation.International Journal of Hydrology Science and Technology. 6.4: 359-370
Tarras‐Wahlberg,N.H., Lane,S.N. 2003. Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango River Basin, southern Ecuador. Hydrological Processes. 17.15: 3101-3123.
Walling,D.E. 1977.Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research. 13.3: 531-538.
Wang,P., Linker,L.C. 2008. Improvement of regression simulation in fluvial sediment loads. Journal of Hydraulic Engineering. 134.10: 1527-1531.
Wang,Y.G., Tian,T. 2013.Sediment concentration prediction and statistical evaluation for annual load estimation. Journal of Hydrology. 482: 69-78.
Warrick,J.A. 2015. Trend analyses with river sediment rating curves. Hydrological Processes.29.6: 936-949.
Yang,G., Chen,Z., Yu,F., Wang,Z., Zhao,Y., Wang,Z. 2007. Sediment rating parameters and their implications: Yangtze River, China.Geomorphology.85.3: 166-175.
Yu,K., Lu,Z., Stander,J. 2003. Quantile regression: applications and current research areas. Journal of the Royal Statistical Society: Series D (The Statistician). 52.3: 331-350.