بازسازی دادههای بارش با استفاده از روشهای سنتی و زمینآماری مطالعه موردی: ایستگاه تحقیقات کشاورزی دیم سیساب، خراسان شمالی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 مربی گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد مشهد

4 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استاد گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

میان­یابی داده­های ناقص و اندازه­گیری نشده بارش در یک ایستگاه، با استفاده از داده­های معلوم در ایستگاه­های مجاور امکان­پذیر می­باشد. روش سنتی وزن­دهی معکوس فاصله و نیز روش زمین آمار کریجینگ از مهم­ترین روش­های میان­یابی برای این منظور می­باشند. در این تحقیق به منظور میان­یابی داده­های ناقص بارش هفتگی در ایستگاه تحقیقات منابع طبیعی و کشاورزی سیساب در استان خراسان شمالی، از روش­های وزن­دهی معکوس فاصله اصلاح شده، کریجینگ معمولی و کوکریجینگ استفاده شد. برای این منظور از داده­های بارش به طول آماری سی سال (1358-1388) در 11 ایستگاه باران­سنجی مجاور ایستگاه سیساب، استفاده گردید. نتایج آزمون تی- تست نشان داد که در سطح 5 درصد اختلاف معنی­داری بین داده­های واقعی و داده­های برآورد شده در روش­های مذکور وجود ندارد. برای ارزیابی میزان خطا و انتخاب بهترین روش، از آماره­های ضریب تعیین، مجذور میانگین مربعات خطا، میانگین خطای مطلق، میانگین خطای اریب و نیز شاخص نسبت میانگین مجذور مربعات خطا به انحراف معیار، استفاده گردید. نتایج این تحقیق با توجه به آماره­های خطا، نشان داد که اگر چه هر سه روش از دقت خوبی برخوردار بوده­اند، اما روش کوکریجینگ با در نظر گرفتن ارتفاع به عنوان متغیر کمکی، مقادیر بارش را با دقت بیش­تری نسبت به دو روش دیگر برآورد کرده است. در این تحقیق، در تحلیل کریجینگ، مناسب­ترین نیمه­واریوگرام از نوع کروی و دامنه تاثیر بین 15 تا 25 کیلومتر حاصل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Interpolation of Rainfall Data using Classical and Geostatistical Methods, Case Study: Sisab Station, Northern Khorasan

نویسندگان [English]

  • Najmeh Khalili 1
  • Amin Alizadeh 2
  • Hojat Rezaee Pazhand 3
  • Hosein Ansari 4
  • Bizhan Ghahraman 2
  • Mohamad Kafi 5
  • Kamran Davary 4
1 Ph.D Student of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Lecturer, Civil Department, Faculty of Engineering, Azad University of Mashhad
4 Associate Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
5 Professor of Agronomy and Plant Breeding Department, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

It is possible to interpolate rainfall missing data in one synoptic station, using recorded data in the adjacent stations. Inverse Distance Weighting and Kriging methods are the most common geostatistical methods which address this problem. In this paper, we have used modified inverse distance weighting, Ordinary Kriging, and Co-Kriging methods to interpolate weekly rainfall missing data in Sisab station in Northern Khorasan. For this purpose, we have used recorded rain fall data over the last thirty years in 11 adjacent stations. Paired Sample T-Test results show there is no significant difference in the significant level 5% between interpolated and actual data through all three used interpolation methods. Paired Sample T-Test results show in the To evaluate the  estimation error, and hence, the best interpolation method,  statistic indices such as coefficient of determination, root mean square error, mean absolute error, mean bias error and RMSE-observations standard deviation ratio are used. This comparison study shows that although all three methods are capable to interpolate the missing data, but Co-Kriging method has more accurate performance incorporating the altitude data of the stations. In this paper, the best fitted semi variance has been achieved by spherical model and 15 to 25 km range through Kriging methods.

کلیدواژه‌ها [English]

  • Geostatistical
  • Kriging
  • Sisab
  • Weekly rainfall
عساکره،ح. 1387. کاربرد روش کریجینگ در میان­یابی بارش، مطالعه موردی: میان­یابی بارش 26/12/1376 در ایران زمین. جغرافیا و توسعه، 12: 42-25.

ثقفیان،ب و رحیمی بندرآبادی،س. 1384. مقایسه روش­های درون­یابی و برون­یابی برای برآورد توزیع مکانی مقدار بارندگی سالانه. تحقیقات منابع آب ایران، 2: 84-74.

مرادی،ع.ر.، آبکار،ع.، محمدی،ص و شهسواری،م. 1386. مقایسه چند روش زمین­آماری در برآورد مقدار متوسط بارندگی روزانه در مناطق خشک و نیمه­خشک. مجموعه مقالات دومین همایش ملی کشاورزی بوم شناختی ایران، 26-25 مهر ماه، گرگان.

میثاقی،ف و محمدی،ک. 1385. پهنه­بندی اطلاعات بارندگی با استفاده از روش های آمار کلاسیک و زمین آمار و مقایسه با شبکه­های عصبی مصنوعی، مجله علمی کشاورزی. 29. 4: 14-1.

فاطمی قیری،س و یزدان­پناه،ح. 1391. ارزیابی روش­های مختلف میان­یابی به منظور برآورد داده­های بارش استان اصفهان. فضای جغرافیایی، 30: 63-36.

مهدیان،م.ح.، متین،م.، غیاثی،ن.ق.، مختاری،ا و اخباری،ت. 1380. بررسی روش­های میان­یابی برای تعیین حداقل خطای تخمین مطالعه موردی: درجه حرارت و تبخیر. تحقیقات مهندسی کشاورزی. 2. 8: 78-63.

قویدل رحیمی،ی، عالی جهان،م و اوجی،ر. 1394. بررسی مدل­های جبری و زمین­آماری در پهنه­بندی بارش استان اردبیل. فضای جغرافیایی، 50: 231-209.

ثقفیان،ب، رزم­خواه،ه و قرمز چشمه،ب. 1390. بررسی تغییرات منطقه­ای بارش سالانه با کاربرد روش­های زمین­آمار (مطالعه موردی: استان فارس). مهندسی منابع آب، 4: 38-29.

Bower,K.M. 2000. The Paired T-Test Using MINITAB. Scientific Computing and Instrumentation.

Chang,K.T. 2004. Introduction to Geographic Information System. 2nd edition. McGrow Hill. New Yourk, U.S.A.

Cheng,K., Lin,S.h and Liou,J.J. 2008. Rain-gauge Network Evaluation and Augmentation using Geostatistics. Hydrological Processes. 22: 2554-2564.

Cressie,N.O.A. 1993. Statistics for Spatial Data. Second Revised Edition. New York: John Wiley and Sons, U.S.A.

Diodato,N., Ceccarelli,M. 2005 Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surf Proc Landforms 30: 259-268

Fox,D.G. 1981. Judging air quality model performance: a summary of the AMS workshop on dispersion models performance, Bulletin of American Meteorological Society, 62, pp. 599-609.

Gan,M., Kousky,V., Ropelewski,C. 2004. The South America monsoon circulation and its relationship to rainfall over westcentral Brazil. Journal of Climate. 17:47–66.

Haberlandt,U. 2007, Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. Journal of Hydrology. 332: 144-157.

Jayawardene,H.K., Sonnadara,D.U.J and Jayawardene,D.R. 2005. Spatial Interpolation of Weekly Rainfall Depth in the Dry Zone of Sri Lanka. Climate Research. 29:223-231.

Kajornrit,J., wong,K.W and Fung,C.C. 2011. Estimation of Missing Rainfall Data in Northeast Region of Thailand using Kriging Methods: A Comparison Study In: International Workshop on Bio-Insptred Computing for Intelligent, Environments and Logistic Systems, March, Canberra, Australia.

Lam,N.S. 1983. Spatial Interpolation Methods Review. The American Cartographer. 10: 129-149.

LO,S.S. 1992. Glossary of Hydrology, Water Resources Publications, PP 1794.

Mair,A and Fares,A. 2011. Comparison of Rainfall Interpolation Methods in a Mountainous Region of Tropical Island. Journal of Hydrologic Engineering (ASCE). 16.4: 371-383.

Singh,J., Knapp,H.V and Demissie,M. 2004. Hydrologic Modeling of the Iroquois River Watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey. Available at: www.sws.uiuc.edu/pubdoc/CR/ ISWSCR2004-08.pdf. Accessed 8 September 2005.

Sluiter,R. 2009. Interpolation Methods for Climate Data, Literature Review. KNMI Internal Report. De Bilt, Netherlands. PP 28.

Wagner,P.D., Fiener,P., Wilken,F., Kumar,S., Schneider,K. 2012. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology 464:388–400.

Willmott,C.J and Matsuura,K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) In Assessing Average Model Performance. Climate Research. 39: 79-82.