پیشبینی و تعیین پارامترهای تاثیرگذار بر افت انرژی موضعی سیستمهای کالورت با استفاده از روش هوشمند الگوریتم تکاملی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده مهندسی عمران، دانشگاه تبریز

2 کارشناسی ارشد مهندسی عمران گرایش آب و سازه‌های هیدرولیکی، دانشگاه تبریز

چکیده

به منظور انتقال آب از یک سمت خاک­ریز به سمت دیگر آن از سازه­های به­ نام کالورت استفاده می­شود. کالورت­ها در انواع مقاطع هندسی مختلف کاربرد داشته و علی­رغم ظاهر ساده آن­ها طراحی این سازه­ها نیاز به انجام محاسبات دقیق داشته و عملکرد آن­ها از پارامترهای مختلفی تاثیر می­پذیرد. تخمین دقیق افت انرژی در کالورت نقش مهمی در طراحی بهینه سیستم­های کالورت دارد. در این مقاله برای مدل­سازی ضریب افت انرژی موضعی در کالورت­ها با هندسه­های مختلف (دایروی و مستطیلی شکل)، جهت شبیه­سازی و تخمین ضریب افت انرژی موضعی، مدل­های متعدد با ورودی­های مختلفی تعریف گردید و نتایج حاصله 1- کارایی روش برنامه­ریزی بیان ژن (GEP) را در تخمین ضریب افت انرژی موضعی سیستم­های کالورت به اثبات رسانید، 2- مشخص گردید که مدل با پارامترهای ورودی (Fr, θ) در تخمین ضریب افت انرژی موضعی ناشی از وجود خم در مسیر و مدل با پارامترهای ورودی (Fr,  ) در تخمین ضریب افت انرژی موضعی ناشی از دهانه ورودی دارای بیش­ترین دقت هستند. معیار­های ارزیابی (R,DC,RMSE) در مدل برتر تست مربوط به پیش­بینی ضریب افت موضعی ناشی از وجود خم در مسیر برابر (074/0، 943/0، 972/0) و معیارهای ارزیابی در مدل برتر تست مربوط به پیش­بینی ضریب افت موضعی ناشی از دهانه ورودی برابر با (04/0، 92/0، 962/0) می­باشد. هم­چنین مطابق با نتایج آنالیز حساسیت، پارامتر θ در تخمین ضریب افت انرژی موضعی ناشی از وجود خم در مسیر و پارامتر  در تخمین ضریب افت انرژی موضعی ناشی از دهانه ورودی بیش­ترین تاثیر را داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction and determination of effective parameters of local energy loss in culvert systems, using intelligent evolutionary Algorithm

نویسندگان [English]

  • kiumaer Roushangar 1
  • Ghazaleh Nassaji Matin 2
1 Associate Professor, Department of Civil Engineering, University of Tabriz, Tabriz, Iran
2 M.sc student, Department of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

A culvert is a hydraulically short conduit which conveys stream flow through a roadway or embankment. Culverts are available in many different shapes and in spite of their simple structure, the process of designing requires accurate calculations and they are controlled by many variables. Accurate estimation of the energy loss in culverts plays an important role in optimum designing of culvert systems. In this paper, in order to simulate the local energy loss coefficient in culverts with various geometries (circular and rectangular), several models with different inputs were defined. The optioned results proved the capability of GEP in predicting local energy loss coefficient in culvert systems. Also it was found that in order to estimate the bend loss coefficient, model with input parameters of (Fr, θ) and to estimate the entrance loss coefficient, models with input parameters of (Fr, ) led to more accurate outcomes. Sensitivity analyses showed that θ and had the key role in estimating bend loss and entrance loss coefficient.

کلیدواژه‌ها [English]

  • Culvert
  • Intelligent models
  • Gene expression programming
  • Minor Loss coefficient
کاوه­کار،ش.، قربانی،م.، اشرف­زاده،ا.، دربندی،ص. 1392. شبیه­سازی نوسانات تراز آب با استفاده از برنامه­ریزی بیان ژن. نشریه مهندسی عمران و محیط زیست دانشگاه تبریز. 43. 72: 75-69

Anderson,D.S. 2006. Inlet Loss Coefficients and Inlet Control Head-Discharge Relationships for Buried-Invert Culverts and Slip-Lined Culverts. Ph.D. Thesis: Utah State University, Logan, UT 113 pp.

Ferreira,C. 2001. Algorithm for solving gene expression programming: a new adaptive problems. Complex systems. 13.2:87-129.

Ferreira,C. 2004. Gene expression programming and the evolution of computer programs. Recent developments in biologically inspired computing. 82-103.

Graziano,F., Martin,B., Stein,S., Umbrell,E. 2001. South Dakota culvert inlet design coefficients Turner-Fairbank Highway Research Center. (No. FHWA-RD-01-076).

Jones,J.S., Kerenyi,K., Stein,S. 2006. Effects of inlet geometry on hydraulic performance of box culverts. Federal Highway Administration (No. FHWA-HRT-06-138).

Kisi,O., Shiri,J., Tombul,M. 2013. Modeling rain fall-runoff process using soft computing techniques. Computers geosciences, 51, 1018-117.

Kotowski,A., Szewczyk,H., Ciezak,W. 2011. Entrance loss coefficients in pipe hydraulic systems. Environment Protection Engineering. 37.4: 105-117.

Lopes,H.S., Weinert,W.R. 2004. EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems. International Journal of Applied Mathematics and Computer Science. 14.3: 375-384.

Malone,T.R., Parr,A.D. 2008. Bend losses in rectangular culverts. Kansas Department of Transportation. (No. K-TRAN: KU-05-5)

Robinson,S.C. 2005. Hydraulic characteristics of a buried invert elliptical culvert inlet and quantification of culvert exit loss (Doctoral dissertation, Utah State University, Department of Civil and Environmental Engineering.

Roushangar,K., Ghasempour,R. 2017. Estimation of bedload discharge in sewer pipes with different boundary conditions using an evolutionary algorithm. International Journal of Sediment Research..32.4:564_574

Shiri,J., Kisi,O. 2011, Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers and geosciences. 37.10: 1692-1701.

Tullis,B.P. 2012. Hydraulic loss coefficients for culverts (R. 734). Transportation Research Board.123p

 Tullis,B., Robinson,S., Young,J. 2005. Part 3: Hydrology, Hydraulics, and Water Quality: Hydraulic Characteristics of Buried-Invert Elliptical Culverts. Transportation Research Record: Journal of the Transportation Research Board.1904: 104-112.

Wang,W.C., Chau,K.W., Cheng,C.T., Qiu,L. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journals of Hydrology. 374.3-4: 294-306.