بررسی خروجی مدلهای پیشبینی عددی تحت سناریوی RCP4.5 درپیشبینی خشکسالیهای هواشناسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری هواشناسی کشاورزی، دانشکده کشاورزی، گروه علوم و مهندسی آب دانشگاه فردوسی مشهد

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد گروه علوم و مهندسی آب- دانشکده کشاورزی- دانشگاه فردوسی مشهد

4 استاد گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد

5 استادیار گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد

چکیده

تغییرات اقلیمی بوجودآمده تکرار و تناوب وقوع خشک­سالی­ها در جهان را دست­خوش تغییرات معنی­داری کرده­است که منابع آبی و کشاورزی کشور ما ایران نیز از گزند این تغییرات در امان نبوده­است. در این مطالعه به دلیل اهمیت حوضه­ی آبریز کشف­رود در شمال­شرق ایران، به بررسی خشک‌سالی‌های هواشناسی این منطقه در طی سه دهه­ی آتی (1406-1397)، (1416-1407) و (1426-1417) پرداخته شد. از آن­جایی که یکی از پرکاربردترین شاخص­های خشک­سالی­ هواشناسی شاخص بارش استاندارشده (SPI) است، دراین پژوهش، شاخص SPI مورد محاسبه قرارگرفت. بهره‌گیری از مدل­های پیش­بینی عددی و استفاده از روش ریزمقیاس دینامیکی، دقیق­ترین و معتبرترین راه جهت تولید داده­های جوی برای انجام پیش‌بینی­های اقلیمی است. درتحقیق حاضر از خروجی بارش مدل EC-EARTH تحت سناریوی RCP4.5 استفاده­شد. با در نظر گرفتن قدرت تفکیک مکانی خروجی­های مدل، کل حوضه­ی کشف­رود به 6 پیکسل 44/0 در 44/0 درجه تقسیم شد و ارزیابی مقادیر بر روی هر پیکسل مورد محاسبه قرارگرفت. هم­چنین، تعداد ماه­های خشک و بسیارخشک به­طور متوسط در کل حوضه محاسبه شد. نتایج نشان دادکه مدل مذکور در سطح اطمینان 99 درصد با ضریب همبستگی به­طور متوسط 64 درصد در پیش­بینی مقادیر بارش، توانمند است. تحلیل نتایج بدست آمده در سه دهه­ی آتی نسبت به دوره­ی پایه (1395-1366) نشان داد که تعداد وقوع خشک­سالی­ها افزایش، اما به­طور متوسط شدت خشک­سالی­های آینده کاسته خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Output of Numerical Prediction Models under RCP4.5 Scenario for Forecasting Meteorological Droughts

نویسندگان [English]

  • Nasrin Salehnia 1
  • Amin Alizadeh 2
  • Seyed Hossein Sanaei Nejad 3
  • Mohammad Bannayan 4
  • Azar Zarrin 5
1 Ph.D. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
3 Professor, Water Engineering, College of Agriculture, Ferdowsi University of Mashhad
4 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
5 Assistant Professor, Department of Geography. Ferdowsi University of Mashhad
چکیده [English]

Climate change increases the repetition and frequency of droughts and this event has undergone significant changes. Water resources and agriculture in Iran has not been spared from the harm of these changes. In this study, because of the importance of Kashafrood basin in the North-East of Iran, the meteorological droughts in the region over the next three years (2027-2018), (2037-2028) and (2047-2038) will be discussed. Since the Standardized Precipitation Index (SPI) is one of the most useful indices of drought, this index was calculated in this study. Numerical calculations and dynamic models are the most accurate sources for prediction of meteorological variables. In this research, the precipitation outputs of the EC-EARTH model under the RCP4.5 scenario that has been downscaled with RCA4 dynamic model were used. According to the resolution of the RCA4 dynamical model, the Kashafrood basin was divided into 6 pixels (0.44 at 0.44 degrees) and then assessment values were determined on each pixel. The results showed that the EC-EARTH model is competent in the prediction of precipitation at a confidence level of 99% with a correlation coefficient averaged 64%. The average number of dry and very dry months was calculated on the whole basin. Analysis of the results in the next three years compared to the observation period (2016-1987) showed that the number of droughts will increase, but the severity of future droughts will be reduced.

کلیدواژه‌ها [English]

  • CORDEX project
  • Dynamical downscaling
  • Index of agreement
  • MENA Region
  • RCP4.5 scenario
صالح­نیا،ن.، موسوی،م و انصاری،ح. 1392. پیش­بینی خشک­سالی با استفاده از نمایه PDSI به کمک مدل­های LARS-WG و HadCM3 (مطالعه موردی: حوضه نیشابور). نشریه آبیاری و زهکشی ایران. 7. 1: 103-92.

Abramowitz,M., Stegun,A. 1965. Handbook of mathematical formulas, graphs, and mathematical tables. Dover publications, New York

Castro,C.L., Pielke,S.R., Leoncini,G. 2005. Dynamical downscaling: Assessment of value retained and added using the regional atmospheric modeling system (RAMS). Geophysical Research, 110.5:1-21.

Chang,H., Jung,I.W. 2010. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology. 388. 3-4: 186–207.

Chen,H., Sun,J., Chen,X. 2013. Future changes of drought and flood events in China under a global warming scenario. Atmospheric and Oceanic Science Letters. 6.1:8–13

Choi, Y., Ahn, J., Suh, M., Cha, D., Lee, D., Hong, S., Min, S., Park, S and Kang, H. 2016. Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pac. Journal of Atmospheric science, 52. 2: 209-222.

De Sales,F., Xue,Y. 2006. Investigation of seasonal prediction of the South American regional climate using the nested model system, journal of geophysics research. 111:1-15.

Deque,M., Rowell, D.P., Luthi, D., Giorgi, F., Christensen, J.H., Rockel, B., Jacob, D., Kjellstrom, E., Castro, M., Van den Hurk, B. 2007. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climate change. 81: 53–70.

Eltahir, E.A.B. 1992. Drought frequency analysis in Central and Western Sudan. Hydrological science journal. 373: 185-199. 

Endris, H.S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., Chang’a, L., Awange,J. L., Dosio, A., Ketiem, P., Nikulin, G., Panitz, H.J., Büchner, M., Stordal,F., Tazalika,L. 2013. Assessment of the performance of CORDEX regional climate models in simulating east African rainfall. Journal of Climate. 26.21:8453–8475.

Giorgi, F., Jones, C and Asrar, G.R. 2009. Addressing climate information needs at the regional level: the CORDEX framework, WMO bulletin. 58.3: 175-183.

Heinrich, G., Gobiet, A. 2012. The future of dry and wet spells in Europe: a comprehensive study based on the ENSEMBLES regional climate models. International journal of climatology. 32.13: 1951–1970.

IPCC. 2013. Stocker, TF. Qin, D., Plattner, G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex, V., Midgley, P.M. (eds) climate change, the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge.

Jones, C., Giorgi, F and Asrar, G. 2011. The coordinated regional downscaling experiment: CORDEX an international downscaling link to CMIP5. Clivar exchanges 16:34-40.

Laprise, R., Hernandez-Diaz, L., Tete, K., Sushuma, L., Separovi L., Martynov, A., Winger, K., Valin,M. 2012. Climate projection over the CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Climate Dynamics .41:3219–3246

Lashkari, A., Bannayan, M. 2013. Agrometeorological study of crop drought vulnerability and avoidance in northeast of Iran. Theoretical application climatology. 113:17–25.

Legates, D.R., McCabe, G.J. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water resource. Research. 35 .1: 233–241.

McKee, T.B., Doesken, N.J., Kleist,J. 1993. The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th conference on applied climatology.

Meinshausen,M., Smith,S.J., Calvin,K., Daniel,J.S., Kainuma,M.L.T., Lamarque,J.F., Matsumoto,K., Montzka,S.A., Raper,S.C.B., Riahi,K., Thomson,A., Velders,G.J.M and Van Vuuren,D.P.P. 2011. The RCP greenhouse gas concentrations and their extensions from1765 to 2300, Climate change. 109: 213–241.

Misra, V., Dirmeyer, P.A and Kirtman, B.P. 2003. Dynamic downscaling of seasonal simulations over South America. Journal of climate. 16: 103-117.

Mishra, A.K and Singh, V.P. 2010. A review of drought concepts. Journal of hydrology, 391.1: 202-216.

Murphy, J. 1999. An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of climate. 12:2256–2284

Nash, J.E and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of hydrology. 10: 282–290.

Nasrollahi, N., AghaKouchak, A., Cheng, L., Damberg, L., Phillips, T.J., Miao, C., Hsu, K and Sorooshian, S. 2015. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water resource. Research. 51: 2847–2864.

Riahi, K., Gruebler, A and Nakicenovic, N. 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological forecasting and social change. 74.7: 887–935.

Salehnia, N., Alizadeh, A., Sanaeinejad, H., Bannayan,   M., Zarrin, A., Hoogenboom, G. 2017. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. J. Arid Land. 9: 797. https://doi.org/10.1007/s40333-017-0070-y

Sayari, N., Bannayan, M., Alizadeh, A., Farid, A. 2013. Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (case study: Kashafrood basin). Meteorological application. 20: 115–127.

Um,M., Kim,Y and Kim,J. 2017. Evaluating historical drought characteristics simulated in CORDEX East Asia against observations. International journal of climatology. 10.1002/joc.5112

UNISDR, the United Nations office for disaster reduction, “Impacts of disasters since the 1992 Rio de Janeiro earth summit.2012. http://www.unisdr.org/files/27162_2012no21.pdf

Wilhite, D. 2000. Drought: a global assessment, Routledge Publication, London, U. K.

Willmot,C.J. 1984. On the evaluation of model performance in physical geography, in: Spatial Statistics and Models, edited by: Gaile, G.L and Willmot, C.J., D. Riedell, Dordrecht. 443–460

Xu,C and Xu,Y. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multimodel ensemble. Atmospheric and oceanic science letter. 5.6:527–533