بررسی داده های واداشت هواشناسی GLDAS1 و تصحیح انحراف داده های بارش برای کاربست در مدل های سطح خشکی )مطالعه موردی: حوضه نیشابور(

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

در بسیاری از مطالعات اقلیمی، مدل­های سطح خشکی با داده‌های هواشناسی واداشت5 می‌شوند و تلاشی برای بررسی کیفیت آن‌ها صورت نمی‌گیرد. هدف ازاین مطالعه ارزیابی داده‌های واداشت هواشناسی پایگاه GLDAS16 به کمک مشاهدات و کاربست روش تصحیح انحراف برای آن‌ها است. داده‌های بارش تصحیح شده در مطالعه دیگری به عنوان ورودی مدل سطح خشکیNoah-MP خواهد بود. مشاهدات برای حوضه نیشابور با دقت زمانی یک روزه و برای سال­های 1379 تا 1388 به مدت 10 سال و از چهارده ایستگاه باران‌سنجی و تبخیرسنجی و یک ایستگاه سینوپتیک موجود در این حوضه جمع‌آوری شد. متغیرهای روزانه دما، رطوبت نسبی، طول موج کوتاه خورشیدی و فشار هوا به ترتیب با ضرایب همبستگی94/0، 77/0، 74/0و 6/0 تطابق خوبی با مشاهدات داشتند. داده‌های بارشGLDAS1 برای بیش­تر این حوضه بارشی کم­تر از مشاهدات را ارائه ‌داد. بارش با همسان کردن میانگین و ضریب تغییرات7 داده‌های پایگاهی با داده‌های مشاهداتی تصحیح شد. نتایج حاصل از به کارگیری روش تصحیح، رضایت­بخش بود به طوری­که اختلاف میانگین بارش روزانه بین داده‌های پایگاهی با داده‌های مشاهداتی به طور موثری و به مقدار 048/0 میلی­متر کاهش یافت. همچنین همبستگی بین تعداد روزهای مرطوب (بارش بیش­تر از 3/0 میلی­متر) در داده‌های مشاهداتی با داده‌های پایگاهی تصحیح شده نسبت به قبل از تصحیح، از مقدار17/1- به مقدار 93/0 بهبود داشت و خودهمبستگی مرتبه یک در داده‌های مشاهداتی با داده‌های تصحیح شده نسبت به داده‌های تصحیح نشده بهتر است و از مقدار 4/2- به مقدار 41/0 رشد کرد. تصحیحات در فاصله 9 مهر تا 10 اسفند برای بارش بیش­ترین مقدار را داشت و روش به کار گرفته شده در فاصله 11 اردیبهشت تا 8 مهر تقریبا به طور کامل انحراف را برطرف کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of GLDAS1 Meteorological Focing Data and Bias Correction of Precipitation Data for Application in Land Surface Model (Case Study :Neishaboor Basin)

نویسندگان [English]

  • Samira Mirshafee 1
  • Hossein Ansari 2
  • Kamran Davary 3
  • Ali Naghi Ziaei 4
1 PhD Student of Water Engineering Department, Ferdowsi University of Mashhad
2 Professor of Water Engineering Department, Ferdowsi University of Mashhad
3 Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
4 Associate Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

In many climate studies, land surface models are forced by meteorological data, and there is no attempt to check the quality of the data. The purpose of this study is to evaluation of GLDAS1 meteorological forcing data and application of bias correction method for these data. The weather data corrected will be input into the Noah-MP model in the next study.
Observations for the Neyshaboor Basin have been collected at a temporal resolution of one day during the period 2000–2009 for ten years from fourteen stations and evaporation stations and a meteorological station in the basin. The variables of temperature, relative humidity, short solar wavelength, and air pressure, with correlation coefficients of 0.94, 0.77, 0.74 and 0.6, respectively, were in good agreement with the observations. The GLDAS1 precipitation data for most of this basin is less than observations. The precipitation has been corrected by matching the mean and the coefficient of variation of GLDAS data with observational data. The results of applying the correction method were satisfactory, so that difference in average daily precipitate between GLDAS1 data and observational data was effectively reduced to 0.048 mm. Also, the correlation between the number of wet days (precipitation over 0.3 mm) in the observational data with the corrected data compared to the uncorrected data improved from -1.17 to 0.93 and the first-order autocorrelation in the observational data with corrected data has improved better than uncorrected data and has grown from -2.4 to 0.41. The corrections were the highest during January, February, October, November and December. the bias correction applied seems to correct the precipitation well during May to September.

کلیدواژه‌ها [English]

  • bias correction
  • GLDAS
  • Neyshaboor Basin
  • Precipitation
حاجی­حسینی،م.، حاجی­حسینی،ح.، نجفی،ع.، مرید،س.، وطن­فدا،ج. 1392. ارزیابی مدل­های شبیه­سازی جهانیVIC و Noah و مدل شبیه­سازیSWAT در برآورد مولفه­های بیلان آب حوضه آبریز فرامرزی هیرمند. پنجمین کنفرانس مدیریت منابع آب ایران. 30-29 بهمن دانشگاه شهید بهشتی، تهران.

فرجی،ز.، وظیفه دوست،م.، شکیبا،ع.، کاویانی،ع.1393. ارزیابی اجزای بیلان آب سطحی در مناطق فاقد آمار با استفاده از مدل جهانی سطح زمین. GLDAS (مطالعه موردی: دشت نیشابور، خراسان رضوی)، دومین همایش ملی بحران آب (تغییراقلیم، آب و محیط زیست)، 19-18 شهریور، دانشگاه شهرکرد، شهرکرد.

Christensen,J., Boberg,F., Christensen,O and Lucas-Picher,P. 2008. On the need for bias correctionof regional climate change projections of temperature and precipitation, Geophysical Research.Letters. 35: L20729.1-6.

Dorigo,W.A., Jeu,R., ChungD., Parinussa,R., Liu,Y., Wagner,W and Fernández-Prieto,D. 2012. Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Research Letters. 39:L18405, 1-7.

Ghazanfari,S., Pande,S., Hashemy,M and Sonneveld,B. 2013. Diagnosis of GLDAS LSM based aridity index and dryland identification. Journal of Environmental Management., 119: 162-172.

Hurkmans,R., Terink,W., Uijlenhoet,R., Torfs,P., Jacob,D and Troch,P. 2009. Changes in stream- flow dynamics in the Rhine basin during the 21st century under different climate scenarios, Journal of Climate, in review. 23 : 679-699.

Kleinn,J., Frei,C., Gurtz,J., Luthi,D., Vidale,P and Schar,C. 2005. Hydrologic simulations inthe Rhine basin driven by a regional climate model, Journal Of  Geophysical Research. 110: D04102, 1-18.

Leander,R and Buishand,T. 2007. Resampling of regional climate model output for the simulation of extreme river flows, Journal of Hydrology. 332:487-496.

Liu,D.,G., Wang,R., Mei,Z., Yu,B and Gu,H. 2014. Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. Journal of Hydrometeorology. 15:320-339.

Ramis,C., Jans´a,A., Alonso,S., Heredia,M.A. 1986. Convection over the westernMediterranean. Synopticstudy and remote observation. Revista Brasileira de Meteorolog´ia. 7: 59-82.

Rodell,M., Houser,P.R., Jambor,U., Gottschalck,J., Mitchell, K., Meng, C.J., Arsenault, K. Cosgrove,B., Radakovich,J., Bosilovich,M., Entin,J.K., Walker,J.P and Lohmann,D., Toll,D. 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society. 85.3: 381-394.

Romaguera, M., Hoekstra, A. Y., Su, Z., Krol, M. S., and Salama, M. S.: Potential of using remote sensing techniques for global assessment of water footprint of crops, Remote Sensing, 2(4), 1177-1196, 2010.

Rui,H. 2011. README Document for Global Land Data Assimilation System Version 1 (GLDAS­1) Products, GES DISC.

Syed,T.H., Famiglietti,J.S., Rodell,M., Chen,J and Wilson,C.R. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research. 44: W02433. 1-15.

Terink,W., Hurkmans,R.T., Torfs,J.F and Uijlenhoet,R. 2009. Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin. Hydrol. Earth Syst. Sci. Discuss., 6, 5377–5413.

Yang,K., Koike,T., Kaihotsu,I and Qin,T. 2009b. Validation of a dualpass microwave land data assimilation system for estimating surface soil moisture in semiarid regions, Journal. Hydrometeorology. 10.3: 780–793.

Zaitchik,B.F., Rodell,M and Olivera,F .2010. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source to sink routing scheme, Water Resources  Research. 46: W06507.1-17

Zhong,L., Su,Z., Ma,Y., Salama,M.S and Sobrino,J.A. 2011. Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change. Journal of Climate. 24: 6540-6550.