پاسخ گیاه پسته به توزیع رطوبت و شوری در سامانه‌های آبیاری قطره‌ای سطحی و زیرسطحی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه تبریز، دانشکده کشاورزی، گروه علوم و مهندسی خاک

2 دانشیار موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج- ایران

3 استاد گروه علوم خاک دانشکده کشاورزی دانشگاه تبریز

4 استادیار گروه علوم خاک دانشکده کشاورزی دانشگاه تبریز

5 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران

چکیده

در این تحقیق، توزیع شوری و رطوبت حاصل از کاربرد آب شور در سامانه آبیاری قطره‌ای سطحی (DI) و زیرسطحی (SDI) برای درختان پسته مورد بررسی قرار گرفت. از پاسخ گیاهی جهت تعیین پارامترهای مورد نیاز برای مدل‏سازی HYDRUS استفاده شد. دو پارامتر h_m50 و 〖EC〗_50 معادل کاهش 50 درصد جذب آب ریشه به دلیل خشکی و شوری به ترتیب cm 8925 و dS/m 7/29 به‌دست آمد. مدل هایدروس توانست با دقت بالایی توزیع رطوبت و شوری را در ناحیه ریشه درختان پسته شبیه‌سازی نماید. نتایج نشان داد که کمترین میزان تجمع املاح در نزدیکی قطره‌چکان‌ها می‌باشد و با دور شدن از آن، شوری خاک افزایش می‌یابد. همچنین تعرق روزانه و جذب آب ریشه محاسبه شده توسط مدل با هدایت روزنه‌ای و جریان شیره آوندی همبستگی معنی‌داری را نشان داد. بر اساس نتایج هایدروس و اندازه‌گیری گیاهی، مشخص شد که جذب آب ریشه در SDI به طور معنی‌داری از DI بیشتر است که نشان می‌دهد SDI با کاهش تبخیر سطحی و توزیع مناسب رطوبت و شوری، باعث کاهش تنش رطوبتی می‌گردد. همچنین مشاهدات نشان داد که به علت کاهش رطوبت خاک، از روز پنجم آبیاری به بعد، جذب آب ریشه را با محدودیت مواجه می‌شود. لذا کوتاه‌تر کردن دور آبیاری برای جلوگیری از تنش رطوبتی ضروری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Pistachio response to water and salinity distribution in surface and subsurface drip irrigation systems

نویسندگان [English]

  • ali ataee 1
  • Mehdi Akbari 2
  • Mohamad reza Neyshabouri 3
  • Davood Zarehagi 4
  • Ajdar Onnabi Milani 5
1 Department of soil science, College of agriculture, Tabriz University, Iran
2 Agricultural Engineering Research Institute(AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Department of Soil Science, College of Agriculture, Tabriz University, Tabriz, Iran
4 Department of Soil Science, College of Agriculture, University of Tabriz, Tabriz, Iran
5 Assistant Professor Soil and Water Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
چکیده [English]

In this study, soil water and salinity distribution in surface drip irrigation (DI) and subsurface drip irrigation (SDI) systems with saline water were investigated. Plant measurements were used to obtain water stress response function parameters that are needed for HYDRUS-2D modeling. The h_m50 and EC_50 parameters that are the 50% reduction of water extraction due to pressure head and salinity, were calculated 8925 cm and 29.7 dS/m, respectively. HYDRUS successfully simulates soil water and salinity distribution in pistachio trees root zone. The results showed that in the immediate vicinity of the emitter, the soil salinity varies in a relatively low range and salt accumulation was observed far from the emitters. Also HYDRUS calculates daily transpiration and root water uptake that they were significantly correlated with stomatal conductance and sap flow. Plant measurements and HYDRUS results show that roots water uptake in SDI significantly was more than DI. Therefore, using SDI, by decreasing surface evaporation and conducting appropriate water and salt distribution in root zone reduce water and salinity stress. Furthermore, results revealed that soil moisture reduction after five days from irrigation, lead to limitation in root water uptake. so, it is necessary to decrease irrigation period from that applied in the field.

کلیدواژه‌ها [English]

  • HYDRUS
  • Root water uptake
  • Transpiration
  • Water Stress Response Function
سیفی،ا.، میرلطیفی،س.م.، دهقانی سانیج،ح و ترابی،م. 1393. تاثیر دور آبیاری بر توزیع رطوبت و شوری در باغ­های پسته تحت شرایط آبیاری قطره­ای زیرسطحی (مطالعه موردی: شهرستان سیرجان استان کرمان). آبیاری و زهکشی ایران. 8. 4: 786-799.

طباطبایی،س.ح.، مستشفی حبیب­آبادی،ف.، شایان­نژاد،م و دهقانی،م. 1395. اثر چهار رژیم تلفیقی آبیاری با آب شور بر الگوی توزیع شوری خاک در شرایط کشت گیاه. علوم آب و خاک. 75 .20: 171-185.

Abdou,HM and Flury,M. 2004. Simulation of water flow and solute transport in free‐drainage lysimeters and field soils with heterogeneous structures. european journal of soil science. 55: 229-241.

AbouLila,T.S., Berndtsson,R., Persson,M., Somaida,M., El-Kiki,M., Hamed,Y and Mirdan,A. 2012. Numerical evaluation of subsurface trickle irrigation with brackish water. Irrigation Science. 31:1125-1137.

Burt,C.B. 1996. Drip irrigation on pistachios (research report), california polytechnic state university. CA, WS.

Chahal,S.S. 2010. Evaluation of soil hydraulic limitations in determining plant-available-water in light textured soils. PhD thesis. School of agriculture, food and wine. The university of Adelaide, Australia.

Chen,L.J., Feng,Q., Li,F.R and Li,C.S. 2014. A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water. agricultural water management. 146: 24-33.

Cowan,I.R. 1977. Stomatal behaviour and environment. advances in botanical research. 4: 117–228.

Escalona,J.M., FlexasJ and Medrano,H. 2002. Drought effects on water flow, photosynthesis and growth of potted grapevines. vitis. 41:57–62.

Esmaeilpour,A., Van Labeke,M.C., Samson,R and Van Damme.P. 2015. Osmotic stress affects physiological responses and growth characteristics of three pistachio cultivars. acta physiologiae plantarum. 37: 123-137.

Flexas,J., Bota,J., Escalona,J.M., Sampol,B and Medrano,H. 2002. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. functional plant biology. 29: 461–471.

Fuentes,S., Mahadevan,M., Bonada,M., Skewes,M.A and Cox,J.W. 2013. Night-time sap flow is parabolically linked to midday water potential for field-grown almond trees. irrigation science. 31.6: 1265–1276.

Fujimaki,H., Ando,Y., Cui,T.B and Inoue,M. 2008. Parameter estimation of a root water uptake model under salinity stress. vadose zone journal. 7: 31–38.

Hanson,B and May,D. 2004. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. agricultural water management. 68: 1-17.

Hassan,G., Persaud,N and Reneau,R. 2005. Utility of HYDRUS-2D in modeling profile soil moisture and salinity dynamics under saline water irrigation of soybean. soil science. 170: 28-37.

Iniesta,F., Testi,L., Goldhamer,D.A and Fereres.E. 2008. Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.). agricultural water management 95: 877-886.

Koumanov,K.S., Hopmans,J.W., Schwankl,L.J., Andreu,L and Tuli,A. 1997. Application efficiency of micro-sprinkler irrigation of almond trees. agricultural water manage. 34:247–263.

Lekakis,E and Antonopoulos,V. 2015. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport. journal of hydrology. 530: 431-446.

Lemeur,R., Ranjbar,A and Van Damme,P. 2001. Ecophysiological characteristics of two pistachio species (Pistacia khinjuk and Pistacia mutica) in response to salinity. pp. 179–187. in: ak be (ed.). XI grempa seminar on pistachios and almonds. zaragoza: ciheam, (cahiers options méditerranéennes; n. 56).

Lu, P., Urban, L and Zhao, P. 2004. Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. acta botanica sinica-english edition. 46: 631-646.

Nang,N.D. 2012. Plant availability of water in soils being reclaimed from the saline-sodic state. PhD thesis. the university of adelaide. australia.

Oron,G., DeMalach,Y., Gillerman,L., David,I and Rao,V. 1999. Improved saline-water use under subsurface drip irrigation. agricultural water management. 39: 19-33.

Parry,C.K. 2014. Biophysically-based measurement of plant water status using canopy temperature. PhD thesis, utah state university. all graduatetheses and dissertations.

Phogat,V., Mahadevan,M., Skewes,M and Cox,J.W. 2012. Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. irrigation science. 30: 315-333.

Roberts,T., Lazarovitch,N., Warrick,A and Thompson,T. 2009. Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. soil science society of america journal. 73: 233-240.

Selim,T., Berndtsson,R and Persson,M. 2013. Simulation of soil water and salinity distribution under surface drip irrigation. irrigation and drainage. 62:352-362.

Šimůnek,J., Van Genuchten,M.T and Šejna.M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. vadose zone journal. 7: 587-600.

Šimůnek,J., Van Genuchten,M.T and Šejna,M. 2012. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, version 1, 241..

Skaggs,T., Trout,T., Šimunek,J and Shouse.P. 2004. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. journal of irrigation and drainage eengineering. 130: 304-310.

Sousa,T.A., Oliveira,M.T and Pereira,J.M. 2006. Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of portugal. plant and soil. 282: 127–134.

Tognetti,R., dĭAndria,R., Morelli,G., Calandrelli,D and Fragnito,F. 2004. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. plant soil. 263: 249–264.

Tuzet,A., Perrier,A and Leuning,R. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. plant, cell and environment. 26: 1097–1116.

van Genuchten MT. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. soil science society of america journal. 44: 892–898.

Van Genuchten,M.T. 1987. A numerical model for water and solute movement in and below the root zone. united states department of agriculture agricultural research service US salinity laboratory.

Van Genuchten,M.Th and Gupta,S.K. 1993. A reassessment of the crop tolerance reponse function. Indian society of soil science. 4:730–737.

Volpe,V., Manzoni,S., Marani,M and Katul,G. 2011. Leaf conductance and carbon gain under salt-stressed conditions. journal of geophysical research. 116: 1–12.

Vrugt,J.A., Hopmans,J.W and Simunek,J. 2001. Calibration of a two-dimensional root water uptake model. soil science society of america journal. 65: 1027-1037.

Yang,Y., Guan,H., Hutson,J.L., Wang,H., Ewenz,C., Shang,S and Simmons,C.T. 2013. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements. hydrological processes. 27: 2857-2863