کاهش عنصر سدیم از محیط های آبی با استفاده از ستون ثابت به وسیله نانو جاذب ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی آب، دانشگاه رازی

چکیده

کمبود منابع آب در جهان و ایران همواره یکی از چالش های مهم انسان به حساب می آید. از طرفی وجود منابع آبی بزرگ نظیر دریاها و اقیانوس ها از جمله دریای مازندران در شمال و خلیج فارس در جنوب ایران ممکن است یکی از راه حل های مناسب در این زمینه باشد. هدف از این تحقیق، بررسی و مقایسه حذف سدیم با استفاده از ستون ثابت توسط جاذب‌های‌ نانوساختار برگ بلوط و پوسته تخم‌مرغ می‌باشد. نتایج نشان داد که مقدار کل جذب، حداکثر ظرفیت جذب و درصد حذف سدیم برای جاذب‌‌های برگ بلوط و پوسته تخم‌‌مرغ به ترتیب برابر با 21/120 و 10/117 میلی‌‌گرم ،1/1 و 24/0 میلی‌‌گرم بر گرم و 10/60 و 88/68 درصد برای غلظت 5 میلی‌‌گرم بر لیتر، 45/194 و 93/169 میلی‌‌گرم، 77/1 و 34/0 میلی‌‌گرم بر گرم و 56/55 و 82/54 درصد برای غلظت 10 میلی‌‌گرم بر لیتر و 83/466 و 84/453 میلی‌‌گرم، 26/4 و 91/0 میلی‌‌گرم بر گرم و 66/53 و 03/54 درصد برای غلظت 30 میلی‌‌گرم بر لیتر به دست آمد. برازش مدل‌‌های پیوسته جذب بر روی داده‌‌های آزمایشی توسط جاذب‌‌های نانو‌‌ساختار نشان داد که در جذب سدیم با استفاده از ستون بستر ثابت، برای جاذب‌‌های برگ بلوط و پوسته تخم‌‌مرغ، به ترتیب مدل‌‌های عمق بستر- زمان سرویس، توماس و یون-نلسون نسبت به بقیه مدل‌‌ها دارای برازش بهتری از داده‌‌های ستون جذب بودند. بر مبنای نتایج حاصل از این تحقیق، جاذب‌‌های نانو‌‌ساختار برگ بلوط و پوسته تخم‌مرغ قابلیت بالای حذف یون‌‌ سدیم را دارا بوده‌‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Decrease of sodium element from aqueous media using a fixed column by nano-adsorbents

نویسندگان [English]

  • Ali Bafkar 1
  • Akbar Rasouli 2
1 Water Engineering Department, agriculture faculty, Razi University, Kermanshah, Iran
2 Water Engineering, Razi University
چکیده [English]

The shortage of water resources in the world and in Iran is always one of the most important human challenges. On the other hand, the existence of large water resources such as seas and oceans, including the Mazandaran Sea in the north and the Persian Gulf in southern Iran, may be one of the most appropriate solutions in this regard. The results showed that total absorption, maximum absorption capacity and percentage of sodium removal for oak leaf and oat leaves adsorbants were equal to 120.21 and 117.10 mg, 1.1 and 0.24 mg / g, 60/10, and 68.88% for concentrations of 5 mg / l 194.45 and 169.93 mg, 1.77 and 0.34 mg / g and 55/56 and 54.82% for concentrations of 10 mg / l and 466.83 and 453.84 mg, 4.26 and 0.91 mg / g, 53.66 and 54.03% for the concentration of 30 mg / ml. The fitting of continuous adsorption models on experimental data by nanostructured adsorbents showed that in the sodium adsorption using fixed bed column for oak leaf and egg shell absorbers, the substrate-time service models, Thomas and Yon-Nelson, respectively, compared to the rest of the models Have better fit of absorption column data. Based on the results of this study, octopus and egg shell nanostructured adsorbents have high potential for removal of sodium ion

کلیدواژه‌ها [English]

  • "Removal of sodium"
  • "nanoparticles
  • "oak leaves"
  • "egg shells"
  • "fixed bed columns"
پور محمد، پ. 1395. بررسی تأثیر جاذب نانوساختار کنوکارپوس بر حذف کادمیم از محلول آبی به وسیله سیستم های پیوسته و ناپیوسته. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه رازی کرمانشاه.

پهلوانزاده، ح. زارع‌‌نژاد اشکذری، ح. 1392. فلوراید زدایی از آب آشامیدنی با ستون با بستر ثابت با استفاده از جاذب ارزان قیمت بوکسیت. نشریه شیمی و مهندسی شیمی ایران، (1)32، ص 24-17.

دیوبند، ل. 1389. استفاده از فناوری نانو به منظور کاهش املاح آب. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه شهید چمران اهواز.

شهیدی، ع. جلیل نژاد فالیزی، ن. و جلیل نژاد فالیزی، ا. 1394. ارزیابی عملکرد جاذب طبیعی لوفا در حذف کادمیم دو ظرفیتی از محیط آبی. مجله آب و فاضلاب، شماره 3، ص 61-51.

فرزی، س. 1395. بررسی تأثیر جاذب  نانوساختار پوشال نیشکر بر حذف کادمیم از محلول آبی به وسیله سیستم های پیوسته و ناپیوسته. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه رازی کرمانشاه.

کهریزی، ه. 1394. حذف فلزات سنگین با استفاده از فناوری نانو. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه رازی کرمانشاه.

Afkhami, A., Saber-Tehrani, M. and Bagheri, H. 2010. Simultaneous removal of heavy-metal ions in wastewater samples usingnano-alumina modified with 2, 4-dinitrophenylhydrazine. Journal of Hazardous Materials. 181: 836–844.

Aksu, Z. and Gonen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry. 39: 599- 613.

Amirnia, S., Ray, M. B., & Margaritis, A. 2016. Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chemical Engineering Journal. 287: 755-764.

Annual Book of ASTM Standards D2867-99 . 2002. Standard Test Method for moisture in activated carbon. D2867-99. 15(1): 801-803.

Annual Book of ASTM Standards D5029-98. 2002. Standard Test Method for Water-Soluble in activated carbon.

APHA/AWWA/WEF. .2005. Standard methods for the examination of water and wastewater, 19th Edition, Washington D.C., USA,

Baek, K., Song, S., Kang, S., Rhee, Y., Lee, C., Lee, B., Hudson, S., and Hwang, T. 2007. Adsorption kinetics of boron by anion exchange resin in packed column bed. Journal of Industrial and Engineering Chemistry. 13: 452-456.

Baker, H. M., & Ghanem, R. A. 2015. Study on removal behavior and separation efficiency of naturally occurring bentonite for sulfate from water by continuous column and batch methods. European Journal of Chemistry. 6(1): 12-20.

Chao, H. P., Chang, C. C. and Nieva, A. 2014. Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry. 20(5): 3408-3414.

Daraei, H., Mittal, A., Noorisepehr, M. & Daraei, F. 2013. Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste. Environmental Science and Pollution Research. 20(7): 4603-4611.

Golie, W. M., & Upadhyayula, S. 2016. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. Journal of Water Process Engineering. 12: 58-65.

Guler, U. A. and Sarioglu, M. 2013. Single and binary biosorption of Cu (II), Ni (II) and methylene blue by raw and pretreated Spirogyra sp.: Equilibrium and kinetic modeling. Journal of Environmental Chemical Engineering. 1(3): 369-377.

Han, R.P., Wang, Y., Zou, W.H., Wang, Y.F. and J. Shi. 2007. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. J. Hazard. Mater. 145: 331–335.

Jain, M., Garg, V.K. and Kadirvelu, K. 2013. Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium–alginate beads. Bioresource technology. 129: 242-248.

Ko, D.C., Porter, J.F. and McKay, G. 2000. Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chemical engineering science. 55(23): 5819-5829.

Lim, A. P. and Aris, A. Z. 2014. Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochemical Engineering Journal. 87: 50-61.

Mohan, S.V., Ramanaiah, S.V., Rajkumar, B. and Sarma, P.N. 2007. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation. Journal of Hazardous Materials. 141(3): 465-474.

Murithi, G., Warui, K. S., & Muthengia, W. 2016. Fixed column study for the removal of Zinc (II) Ions from waste water by bone char rice husks ash and water hyacinth composite-mixture.International Journal of Science and Research. 5(2): 708-714.

Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. and Bui, X.T. 2015. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study. Science of the Total Environment. 523: 40-49.

Nidheesh, P.V., Gandhimathi, R., Ramesh, S.T. and Singh, T.S.A. 2012. Adsorption and desorption characteristics of crystal violet in bottom ash column. Journal of Urban & Environmental Engineering. 6(1).

Padmesh, T.V.N., Vijayaraghavan, K., Sekaran, G., and Velan, M. 2005. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azollafiliculoides. Journal of Hazardous Materials. 125: 121-129.

Samatya, S., Kabay, N., ksel, U.Yu., erref Arda, Mu. and M. Yuksel. 2006. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive & Functional Polymers. 66: 1206–1214.

Sivakumar, P., and Palanisamy, P. N. 2009. Adsorption studies of basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L. International Journal of Chemistry and Technology Research. 1: 502-510.

Thomas, H.C. (1944. Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society. 66(10): 1664-1666.

Wang, J. and Chen, C. 2009. Biosorbents for heavy metals removal and their future. Biotechnology advances. 27(2): 195-226.

Yoon, Y.H. and NELSON, J.H. 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. The American Industrial Hygiene Association Journal. 45(8): 509-516