Analysis and Future Study of 60-Year Temporal Variations of Water Use Efficiency of Irrigated Wheat in Tabriz Plain

Document Type : Original Article

Authors

1 AREEO

2 Agricultural Engineering Research Institute, AERI

Abstract

Considering the importance of enhancing water use efficiency in the production of crops in the Iran; and due to the appropriateness of time series methods in the analysis and future studies of the behavior of water engineering phenomena, the aim of this study was to analyze and future study of water use efficiency in wheat production in Tabriz plain with suitable time series models. The modeling (based on 30 years data), test (based on 12 years data) and future study (based on 18 years data) were made with 60 years (from 1354/1975 to 1413/2034) water use efficiency in wheat production. Fourteen time series models were evaluated to determine the suitable model. Based on common statistics, ARIMA (1,0,1) was detected as the most suitable model for water use efficiency in wheat production in Tabriz plain. Results revealed that water use efficiency in wheat production had approximately an increasingly trend. This index was from 0.11 to 0.68 kg m-3 with an average of 0.32 kg m-3. Scenarios and various promotion conditions were also considered to improve the water use efficiency in wheat production. If the water use efficiency in wheat production is increased by as much as 10, 15, 20 and 25 percent, then the index in the year 1413/2034 will be respectively equal to 0.95, 0.98, 1.01, and 1.05 kg m-3. With the continuation of the current trend and without applying the any improvement plan, the value of this index will be 0.89 1.05 kg m-3 in 1413/2034. Applicable procedure and solutions were proposed to significantly enhance water use efficiency in wheat production in the east of Urmia Lake.

Keywords


احمدی، ک.، قلی­زاده، ح.، عبادزاده، ح. ر.، حسین­پور، ر.، حاتمی. ف.، فضلی، ب.، کاظمان، آ. و رفیعی، م. 1394. آمارنامه کشاورزی سال زراعی 93-1392. جلد اوّل: محصولات زراعی وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. 169 ص.
بی­نام، 1394. آمارنامه کشاورزی، جلد اوّل: محصولات زراعی سال 93-1392. مرکز فناوری اطلاعات و ارتباطات، معاونت برنامه­ریزی و اقتصادی، وزارت جهاد کشاورزی. 77 ص.
چیت‌سازان، م. میرزائی، س. ی. و چینی‏پرداز، ر. 1386. منطقه‌بندی آبخوان شهرکرد با استفاده از تحلیل سری‌های زمانی. مجله علوم. دانشگاه شهید چمران اهواز. قسمت ب. صفحه‌های 1 تا 15.
حیدری، ن. 1390. تعیین و ارزیابی شاخص بهره‏وری مصرف آب محصول زراعی تحت مدیریت کشاورزان در کشور. مجله مدیریت آب و آبیاری. 1 (2): 57-43.
رحمانی، ع. ر. و سدهی، م. 1383. پیش‌بینی تغییرات سطح آب زیرزمینی دشت همدان- بهار با الگو سری‌های زمانی. مجله آب و فاضلاب. جلد 15 شماره 3 صفحه‌های 42 تا 49.
رضوی، ر. 1387. اثر حذف آبیاری در مراحل رشد گندم بر بهره‏وری مصرف آب و عملکرد کمّی و کیفی آن. مجلّه علوم خاک و آب. 22 (1): 145-137.
عبادی، ف.، وسعیدنیا، الف. 1388. ترازنامه غذایی جمهوری اسلامی ایران 85-1381. مؤسسه پژوهش­های برنامه­ریزی و اقتصادی کشاورزی. 142 ص.
عباسی، ف.، سهراب، ف.، و عباسی ن.1394. راندمان‏های آبیاری: تغییرات زمانی و مکانی آن در ایران. موسسه تحقیقات فنی و مهندسی کشاورزی. ویراست سوم. 45  صفحه
عنابی میلانی، ا. 1385. اثر متقابل رژیم­های آبیاری و منابع مختلف نیتروژن بر عملکرد بهره‏وری  مصرف آب گندم، مجله دانش نوین کشاورزی. 2 (5): 56-44.
فیضی، م. 1382. بهره‏وری  مصرف آب با کیفیت­های مختلف بر روی عملکرد محصولات گندم، جو، پنبه و آفتابگردان، مجله علوم خاک و آب. 17 (1): 106-97.
قنبرپوری، م. ع؛ و م. سپه­وند. 1382. تعیین مدیریت مناسب آبیاری. مجموعه مقالات هشتمین کنگره علوم خاک ایران.
منتجبی، ن.، و وزیری، ژ. 1383. اثر برنامه­ریزی آبیاری بر عملکرد و بهره‏وری  مصرف آب گندم در گلپایگان. مجله علوم خاک و آب 18 (1): 62-56.
ناصری، ا. 1393. مجموعه نگاشت های ترویجی آبیاری. مولف. 233 ص.
 نیرومند، ح. 1376. تحلیل سری‌های زمانی، روش‌های یک متغیری و چند متغیری (ترجمه). دانشگاه فردوسی مشهد.
 
Adhikary, S.K., Rahman, M. and Gupta, A.D. 2012. A stochastic modelling technique for predicting groundwater table fluctuations with time series analysis. International Journal of Applied Science and Engineering Research, 1(2): 238-249.
Ahn, H. 2000. Modeling of groundwater heads based on second order difference time series modeling. Journal of Hydrology, 234: 82-94.
Anonymous. 1993. Iranian comprehensive water plan. The plains development features. V (1): North and Azarbaijan Watersheds. Jamab consulting Company. 288pp. (In Farsi)
Bandyopadhyay, P.K., Mallick, S., 2003. Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area. Agric. Water Manage. 59: 33–47.
Brockwell, P.J., and Davis, R.A. 1996. Introduction to time series and forecasting. Springer- Verlag, New York, Inc.
Carter, L. M., 1985. Wheel traffic is costly. Trans. ASAE. 28:430-434.
Caviglia, O.P., Sadras, V.O., 2001. Effect of nitrogen supply on crop conductance, water- and radiation-use efficiency of wheat. Field Crops Res. 69, 259–266.
Chapagain, A.K. and Hoekstra, A.Y., 2011. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 70(4), pp.749-758.
Chatfield, C. 1996. The analysis of time series: an introduction. 5th edition. Chapman and Hall. UK.
Choubin, B., and Malekian, A. 2017. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environmental Earth Sciences, 76(15), p.538.
Cirkel, D.G., Witte, J.P.M. and van der Zee, S.E. 2010. Estimating seepage intensities from groundwater level time series by inverse modelling: A sensitivity analysis on wet meadow scenarios. Journal of hydrology, 385(1-4):132-142.
Corbeels, M., Hofman, G., van Cleemput, O., 1998. Analysis of water use by wheat grown on a cracking clay soil in a semi-arid Mediterranean environment: weather and nitrogen effects. Agric. Water Manage. 38: 147–167.
Cuthbert, M.O. 2010. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resources Research, 46(9).
Day, E.E., 1925. Statistical analysis. Macmillan.New York. pp 429.
Deju, Z., Jingwen, L., 1993. The water-use efficiency of winter wheat and maize on a salt-affected soil in the Huang Huai Hai river plain of China. Agric. Water Manage. 23: 67–82.
Fengrui, L., Songling, Z., Geballe, G.T., 2000. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China. Agric. Ecosyst. Environ. 79: 129–142.
Gibrilla, A., G. Anornu, G., and Adomako, D. 2018. Trend analysis and ARIMA modeling of recent groundwater levels in the White Volta River basin of Ghana. Groundwater for Sustainable Development, 6:150-163.
Hatch, C.E., Fisher, A.T., Ruehl, C.R. and Stemler, G. 2010. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. Journal of Hydrology, 389(3-4):276-288.
Irvine, D.J., Cranswick, R.H., Simmons, C.T., Shanafield, M.A. and Lautz, L.K. 2015. The effect of streambed heterogeneity on groundwater‐surface water exchange fluxes inferred from temperature time series. Water Resources Research, 51(1): 198-212.
Jin, M., Zhang, R., Sun, L., Gao, Y., 1999. Temporal and spatial soil water management: a case study in the Heilonggang region, PR China. Agric. Water Manage. 42: 173–187.
Johnson, T.C., Slater, L.D., Ntarlagiannis, D., Day Lewis, F.D. and Elwaseif, M. 2012. Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resources Research, 48(7).
Kamilov, B., Ibragimov, N., Evett, S., Heng, L., 2002. Use of neutron probe for investigations of winter wheat irrigation scheduling in automorphic and semi-hydromorphic soils of Uzbekistan. In: Proceedings of the International Workshop on Conservation Agriculture for Sustainable Wheat Production in Rotation with Cotton in Limited Water Resource Areas, Tashkent, Uzbekistan, October 13–18, 2002.
Kruse, E.G., Champion, D.F., Yoder, R.E., 1991. High saline water-table effect on wheat irrigation. In: Allen, R.A., Howell, T.A., Pruitt, W.O., Walter, I.A., Jensen, M.E. (Eds.), Proceedings of the international symposium on Lysimeters for Evapotranspiration and Environmental Measurements, Honolulu, Hawaii, July 23–25, 1991, pp. 335–343.
Li, F-M., Song, Q-H., Liu, H-S., Li, F-R., Liu, X-L., 2001. Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions. Agric. Water Manage. 49: 173–183.
Mishra, H.S., Rathore, T.R., Tomar, V.S., 1995. Water use efficiency of irrigated wheat in the Tarai Region of India. Irrig. Sci. 16: 75–80.
Nasseri, A., and Fallahi, H., 2007. Water use efficiency of winter wheat under deficit irrigation. Journal of Biological Sciences. 7(1):19-26.
Nasseri, A., Neyshabori, M.R. and Fard, A.F., 2013. Time series analysis of furrow infiltration. Irrigation and Drainage, 62(5), pp.640-648.
Ohsowski, B. M., Dunfield, K. E., Klironomos, J. N. and Hart, M. M., 2016. Improving plant biomass estimation in the field using partial least squares regression and ridge regression. Botany, 94(7), 501-508.
Oweis, S., Zhang, H., Pala, M., 2000. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment. Agron. J. 92: 231–238.
Pandey, R.K., Maranville, J.W., Admou, A., 2001. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency. Eur. J. Agron. 15: 93–105.
Peterson, R.N., Santos, I.R. and Burnett, W.C. 2010. Evaluating groundwater discharge to tidal rivers based on a Rn-222 time-series approach. Estuarine, Coastal and Shelf Science, 86(2):165-178.
Rahman, S.M., Khalil, M.I., Ahmed, M.F., 1995. Yield-water relations and nitrogen utilization by wheat in salt-affected soils in Bangladesh. Agric. Water Manage. 28: 49–65.
Rakhshandehroo, G.R. and Amiri, S.M. 2012. Evaluating fractal behavior in groundwater level fluctuations time series. Journal of hydrology, 464:550-556.
Regan, K.L., Siddique, K.H.M., Tennant, D., Abrecht, D.G., 1997. Grain yield and water use efficiency of early maturing wheat in low rainfall Mediterranean environments. Aus. J. Agric. Res. 48: 595–603.
Salas, J.D., Delleur, J.W., Yevjevich V.M., and Lane, W.L. 1980. Applied modeling of hydrologic time series. Water Resources publications. Littleton Co.
Sen, Z. 1998. Small sample estimation of the time average in climate time series. International Journal of Climatology, 18: 1725-1732.
Sezen, S.M., Yazar, A., 1996. Determination of water–yield relationship of wheat under Cukurova conditions. Tr. J. Agric. For. 20: 41–48 (in Turkish, with English abstract).
Sharma, K.D., Kumar, A., Singh, K.N., 1990. Effect of irrigation scheduling on growth, yield and evapotranspiration of wheat in sodic soils. Agric. Water Manage. 18, 267–276.
Sharma, K.S., Samra, J.S., Singh, H.P., 2001. Influence of boundary plantation of poplar (Populus deltoides M.) on soil-water use and water use efficiency of wheat. Agric. Water Manage. 51: 173–185.
Siddique, K.H.M., Tennant, D., Perry, M.W., Belford, R.K., 1990. Water use and water use efficiency of old and modern cultivars in a Mediterranean-type environment. Aus. J. Agric. Res. 41: 431–447.
Singh, R.V., Chauhan, H.S., 1996. Irrigation scheduling in wheat under shallow groundwater table conditions. In: Cramp, C.R., Sadler, E.J., Yoder, R.E. (Eds.), Proceedings of the International Conference on Evapotranspiration and Irrigation Scheduling, San Antonio Convention Center, San Antonio, Texas, November 3–6, 1996, pp. 103–108.
Taweesin, K., Seeboonruang, U., and Saraphirom, P. 2018. The Influence of Climate Variability Effects on Groundwater Time Series in the Lower Central Plains of Thailand. Water, 10(3), p.290.
Vandersteen, G., Schneidewind, U., Anibas, C., Schmidt, C., Seuntjens, P. and Batelaan, O. 2015. Determining groundwater‐surface water exchange from temperature‐time series: Combining a local polynomial method with a maximum likelihood estimator. Water Resources Research, 51(2): 922-939.
Vazifedoust,M., Van Dam, J.C., Feddes, R.A., 2008. Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water management. 95(2):89-102.
Waheed, R.A., Naqvi, M.H., Tahir, G.R., Naqvi, S.H.M., 1999. Some studies on pre-planned controlled soil moisture irrigation scheduling of field crops. In: Kirda, C., Moutonnet, P., Hera, C., Nielsen, D.R. (Eds.), Crop Yield Response to Deficit Irrigation. Developments in Plant and Soil Sciences, vol. 84. Kluwer Academic Publishers, Dordrecht, pp. 180–195.
Wang, H., Zhang, L., Dawes, W.R., Lu, C., 2001. Improving water use efficiency of irrigated crops in the North China Plain: measurements and modeling. Agric. Water Manage. 48: 151–167.
Xianqun, X., 1996. The combined field experiment for determining evapotranspiration in north China Plain. In: Cramp, C.R., Sadler, E.J., Yoder, R.E. (Eds.), Proceedings of the International Conference Evapotranspiration and Irrigation Scheduling, San Antonio Convention Center, San Antonio, Texas, November 3–6, 1996, pp. 69–74.
Yang, Q., Wang, Y., Zhang, J., and Delgado, J. 2017. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China. Applied Water Science, 7(2): 689-698.
Zhang, H., Wang, X., You, M., Liu, C., 1999. Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig. Sci. 19: 37–45.
Zhang, J., Sui, X., Li, B., Su, B., Li, J., Zhou, D., 1998. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Res. 59, 91–98.
Zwart, S.J. and Bastiaansen W.G.M., 2004 Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management. 69(2): 115-133