Effect of Meteorological Drought on Groundwater Resources of Varamin Plain Using SPI, NISTOR and GRI index

Document Type : Original Article

Authors

1 Ph.D. Student, Department of Civil engineering, Shahr-e-Qods Branch, Islamic Azad University,Tehran, Iran

2 Associate Professor, Department of Civil engineering, Shahr-e-Qods Branch, Islamic Azad University,Tehran, Iran

3 Professor, Department of Civil engineering, Shahr-e-Qods Branch, Islamic Azad University,Tehran, Iran.

4 Assistant Professor, Department of Civil engineering, Shahr-e-Qods Branch, Islamic Azad University,Tehran, Iran

Abstract

The purpose of this study is to investigate the effect of meteorological drought on groundwater resources in Varamin plain. For this purpose, the effect of meteorological drought was investigated through standard precipitation index (SPI), NISTOR index and groundwater source index (GRI). Therefore, in order to evaluate the effect of climatic parameters such as temperature and precipitation on the groundwater status of Varamin plain, time statistics (1367-1397) of the parameters of the plain were used. The results showed that according to the SPI index, this plain is approaching weak drought conditions during the last 10 years of the study period. Therefore, due to the lack of natural food sources of the aquifer in recent years (since 1388), accidental falls have occurred in this aquifer, which has led to the GRI index from normal drought conditions to relatively severe drought conditions. Finally, the results of SPI and GRI index were compared with NISTOR index, which is obtained from the inferential matrix of the combination of Di-Marton climate index and effective precipitation. This index also assessed the effect of drought and rainfall nutrition index on groundwater resources in the desired period as very severe.

Keywords


احمدی آخورمه، م. نوحه­گر، ا. سلیمانی مطلق، م. و طایی سمیرمی، م. 1394. بررسی خشکسالی آب زیرزمینی با استفاده از شاخص­های SWI و GRI در آبخوان محدوده مطالعاتی مرودشت خرامه استان فارس. نشریه مهندسی آبیاری و آب. (6)21: 105-118.
اسدزاده، ف. کاکی، م. شکیبا، س. و راعی، ب. 1395. تأثیر خشکسالی بر کیفیت و سطح آب زیرزمینی دشت قروه و چهاردولی. نشریه تحقیقات منابع آب ایران. (3)12: 165-153.
شهوری، ن. خلیلیان، ص. موسوی، س.ح. و مرتضوی، س.ا. 1398. بررسی اثرات تغییر اقلیم بر منابع آب حوضه دشت ورامین با استفاده از مدل SWAT. نشریه آبیاری و زهکشی ایران. (2)13: 354-366.
یعقوب‌زاده، م. امیرآبادی‌زاده، م. خزیمه نژاد، ح. و زراعتکار، ز. 1397. ارزیابی سه روش ریزمقیاس‌نمایی در پیش‌بینی خشکسالی هواشناسی تحت تاثیرتغییراقلیم. نشریه آبیاری و زهکشی ایران. (2)12: 354-366.  
Budyko, M.I. 1974. Climate and Life. Academic Press, New York, USA, p. 508.
Chamanpira, G. Zehtabian, G. Ahmadi, H. and Malekian, A. 2014. Effect of drought on groundwater resources; a study to optimize utilization management (Case study: Alashtar plain). Bull. Env. Pharmacol. Life Science 3:48-56
De Martonne, E. 1926. A new ciimatological function: the aridity index. La Meteorol. 2, 449e458 (in French).
Deniz, A., Toros, H. and Incecik, S. 2011. Spatial variations of climate indices in Turkey. Int. J. Climatol. 31, 394e403.
Dua K.S.Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M.E. Klaas, Eldav C.M. Klaas. 2019. Assessing climate changes impacts on tropical karst catchment: Implications on groundwater resource sustainability and management strategies. Journal of Hydrology. 582: 124426. https://doi.org/10.1016/j.jhydrol.2019.124426.
Gerrits, A.M.J., Savenije, H.H.G., Veling, E.J.M. and Pfister, L. 2009. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resource. Res. 45 (W04403), 1–15. http://dx.doi.org/10.1029/2008WR007308
IPCC. Summary for Policymakers. In: Climate Change. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Li, B. and Rodell, M. 2014. Evaluation of a model-based groundwater drought indicator in the conterminous US. Journal of Hydrology. 526:78-88.
Mckee, T. B. Doesken, N. J. and Kleist, J. 1993. The relationship of drought frequency and duration to time scales. 8 confij, Applied Climatology.
Mishra, A.K. and Singh, V.P. 2010. A Review of drought concepts. Journal of Hydrology. 391(1):202-216.
Mendicino, G. Senatore, A. and Versace, P. 2008. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology. 357(3): 282-302.
 Najafi, M.R., and Moazami, S. 2015. Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969-2009. Int. J. Climatol. 36(4): 1863-1872.
Nistor, M.M. and Mîndrescu, M. 2017. Climate change effect on groundwater resources in Emilia-Romagna region: an improved assessment through NISTOR-CEGW method. Quat. Int. 1–15. https://doi.org/10.1016/j.quaint.2017.11.018.
Nistor, M. and Porumb-Ghiurco, C. 2015. How to compute the land cover evapotranspiration at regional scale? A spatial approach of Emilia-Romagna region GEOREVIEW Scientific Annals of Ştefan cel Mare University of Suceava Geography Series 25. doi:10.4316/GEOREVIEW.2015.25.1.268.
Radfar, M., Van Camp, M. and Walraevens, K. 2013. Drought impacts on long-term hydrodynamic behavior of groundwater in the tertiary–quaternary aquifer system of Shahrekord plain, Iran. Environmental earth sciences 70(2):927-942
Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. Xie, X., Li, Y.X., Li, R.