Design and evaluation of fiber-based Sensors using in soil moisture monitoring

Document Type : Original Article

Authors

1 Water Engineering Department, Faculty of Agricultural Science, University of Guilan, Rasht, Iran

2 Assistant Professor of Fibrous Structures and Process Engineering, Faculty of Engineering, University of Guilan,

Abstract

Lack of water resources due to droughts and mismanagement of water consumption, has been paid more attention to provide effective solutions to increase water productivity, especially in the agricultural sector. One of the most important solutions in this regard is the use of soil moisture monitoring systems. In such systems, the performance efficiency of moisture sensors used in the soil possesses particular importance. In this study, moisture sensors based on fiberglass structures were designed and manufactured in 2021 and their performance was characterized. For this purpose, the sensors were designed in the form of porous blocks containing four types of fiberglass woven structures as membranes (P200، T281، P296 و P186). The results of statistical studies showed that P200, P296, T281 and P186 sensors had acceptable accuracy for estimating soil moisture, respectively. Based on RMSE the sensor equipped with P200 and P186 membrane had 0.05 and 0.065 error that were the lower and highest accuracy in measuring soil moisture. Also, the performance of the designed sensors in ten soil textures showed that the highest measurement accuracy was in medium to light soil texture. So that in P200 sensor the Sandy loam soil texture (with nRMSE=0.004), P186 sensor the Loam and Sandy Loam soil texture (with nRMSE=0.097-0.099), P296 sensor the Loam soil texture (with nRMSE=0.071) and T281 sensor the Silty Loam soil texture (with nRMSE=0.07) had the highest accuracy. The results showed that the type of membrane is effective on the efficiency of the sensor and the choice of membrane is suggested depending on the soil texture. Except P186 membrane, other membranes have acceptable accuracy and their low cost, ability to store and send soil moisture data to processing systems, recommend their use in smart irrigation system.

Keywords


اسماعیلی‌زاده، م. و نیشابوری، م. ر. 1380. طراحی، ساخت و افزایش کارایی بلوک‌های گچی برای تعیین رطوبت خاک. مجله علوم کشاورزی و منابع طبیعی. 8 (3): 3-11.
امید، ر.، پارسی‌نژاد، م. و سهرابی، ت. 1398 . اثربخشی راهکارهای مدیریتی کاهش مصرف آب کشاورزی (مطالعه موردی: محدوده مطالعاتی مرودشت – خرامه). نشریه حفاظت منابع آب و خاک، 8 (4): 85-67.
انصاری، ح. و حسن پور، م. 1394. طراحی و ساخت دستگاه اندازه گیری داده های محیطی خاک به ویژه رطوبت، دما و شوری با نام REC-P تجاری 55. نشریه آبیاری و زهکشی ایران. 1 (9): 32-43.
رحمانی ثقیه، ج. و قائمی، ع. 1392. اثر شوری بر کاربرد حسگرهای هوشمند در تعیین رطوبت خاک. نشریه مدیریت آب و آبیاری. 3 (2): 135-146.
قائمی، ع. و رحمانی ثقیه، ج. 1393. مقایسه عملکرد حسگر های هوشمند رطوبت خاک با چند روش متداول تعیین رطوبت خاک در روش آبیاری میکرو. نشریه آبیاری و زهکشی ایران. 1 (8): 16-25.
قنادزاده، م.ع.، داوری، ک. و قهرمان، ب. 1387. ارزیابی ساختمان مختلف بلوک‌های گچی برای تعیین رطوبت خاک. مجله پژوهش آب ایران. 2 (3): 23-32.
مروج‌الاحکامی، ب. و باغشاهی، م. 1399. امکان‌سنجی ساخت و ارزیابی یک سنسور رطوبت‌سنج در بافتهای متفاوت خاک. تحقیقات منابع آب ایران. 16 (1): 145-135.
یزدانی کچویی، م. 1375. مقایسه روش‌های اندازه‌گیری رطوبت خاک در مزرعه. پایان‌نامه کارشناسی ارشد دانشگاه تربیت مدرس.
 
Ajayi, A. S., Eleta, P. O., Duweni, E. C. and Ehiomogue, P. 2019. Fabrication and testing of gypsum blocks for soil moisture determination. Journal of Natural Sciences Research. 9 (3): 67-74.
Aziz, M., Khan, M., Anjum, N., Sultan, M., Shamshiri, R. R., Ibrahim S. M., Balasundram, S. K. and Aleem, M. 2022. Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture, 12 (564): 1-14.
Bai, W., Kong, L. and GuoState, L. 2013. Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering. 5: 406–411.
Boutraa, T., Akhkha, A., Alshoaibi, A., and Atta, R. 2011. Evaluation of the effectiveness of an automated irrigation system using wheat crops. Agriculture and Biology Journal of North America. 2: 80-88.
Campbell, G.S. and Mulla, D.J. 1990. Measurement of soil water content and potential. Chapter 6 In Stewart B.A. and Nielsen D.R. (co-editors). Irrigation of Agricultural Crops. American Society of Agronomy. Madison, USA. 127-142.
Cardenas-Lailhacar, B. and Dukes, M.D. 2009. Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management. 97: 666-672.
Charlesworth, P. 2005. Soil Water Monitoring, Irrigation Insights No. 1, Second Edition. Coelho E.F. and D. Or. 1996. Flow and uptake patterns affecting soil water sensor placement for drip irrigation management. Transactions of the American Society of Agricultural Engineers. 39 (6): 2007-2016.
Chow, L., Xing, Z., Rees, H.W. Meng, F. and Monteith, J. 2009. Field performance of nine soil water content sensors on a sandy loam soil in New Brunswick, maritime region, Canada. Sensors. 9: 9398-9413.
Ezekiel, O., Danbaki, B.A. and Fabumi, G.T. 2021. Performance evaluation of gypsum block, tensiometer and moisture sensor for soil moisture content determination. Journal of Agricultural Engineering and Technology. 26 (2): 103-111.
FAO. 2017. Water for Sustainable Food and Agriculture. A report produced for the G20 Presidency of Germany. Food and Agriculture Organization of the United Nations, 33 pages.
Jamieson, P. D., Poeter, J. R. and Wilson, D.R. 1991. A test of the computer simulationmodel ARCWHEAT1 on wheat crops grown in New Zealand, Field Crops Research, 27:337-350.
Ganjegunte, G. K., Sheng, Z. and Clark, J. 2012. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Applied Water Science, 2:119-125.
Keyhani, A. 2001. Development of Mini-Gypsum Blocks for Soil Moisture Measurement and their Calibration to Compensate for Temperature. Journal of Agricultural Science Technology. 3: 141-145.
Leib, B. G. 1998. The 1998 survey of irrigation scheduling providers. The Washington Irrigator News Letter. Washington State University. Prosser, WA.
Leib, B.G., Hattendorf, M., Elliott, T. and Matthews, G. 2002. Adoption and of 1998.Agric.Water Manage.55:105–120.Adaptation of Scientific Irrigation Scheduling: Trend from Washington, USA as of 1998. Agriculture Water Management. 55: 105–120.
Maughan, T., Niel Allen, L. and Dan, D. 2015. Soil Moisture Measurement and Sensors for Irrigation Management. Utah State University. AG/Irrigation/2015-01pr.
McCann, I. R., Kincaid, D. C. and Wang, D. 1992. Operational characteristics of the Watermark model 200 soil water potential sensor for irrigation management. Applied Engineering in Agriculture. 8 (5):605- 609.
Prichard, T., Hanson, B., Schwankl, L., Verdegaal, P. and Smith, R. 2004. Deficit irrigation of quality wine grapes using micro-irrigation techniques. University of California Cooperative Extension, p. 91.
Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., Aziz, M. and Sultan, M. 2022 .Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability. 14 (1153): 1-23.
Spaans, E. J. A. and Baker, J.M. 1992. Calibration of Watermark soil moisture sensors for soil matric potential and temperature. Plant and Soil, 143: 213-217.
Wang, H. 2019. Irrigation efficiency and water withdrawal in US agriculture. Water Policy, 21: 768–786.
Wei, B., Lingwei, K. and Aiguo, G. 2013. Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering, 5: 406–411.
Willmott, C. J. 1982. Some comments on the evaluation of model performance, Bulletin of the American Meteorological Society. 63: 395-409.