Investigation temporal variation of surface runoff and its relation with soil properties in semi-arid soils

Document Type : Original Article

Authors

1 Soil Sci. Dept, Univ. of Zanjan

2 Soil Sci. Dept., Univ. Zanjan

3 University of zanjan- agricalture faculty

Abstract

Surface runoff is the main factor eroding soil which causes sheet and inter-rill erosion in gentle slopes. It started when water infiltration would be lower than rainfall intensity during rainfall event. Soil properties can vary amount and rate of surface runoff during rainfall. This study was carried out to investigate the role of soil properties in amount of surface runoff generation and its temporal variations in different soil textures. Eight soil textures placed in 1 m × 1.2 m plots were exposed under seven simulated rainfalls with 60 mm h-1 in intensity for 60 min. Runoff samples were collected for 5-min intervals during each event. Results indicated that various soil physicochemical properties are different among the soils. Surface runoff varied among the soils and the highest runoff (55.51 mm) was in clay, while sand didn’t produce any runoff during rainfall. Surface runoff production rate temporally increased during rainfall and reached to a pick after about 30-50 min. Time to pick was very short (30 min) in fine textured soils. The correlation analysis showed that surface runoff is significantly affected by sand, silt, clay, bulk density, gravel, hydraulic conductivity, calcium carbonate, gypsum and ESP. With an increase in soil hydraulic conductivity, surface runoff was inversely differed. Linear regression analysis showed that sand percentage is the most important factor controlling surface runoff in semi-arid soils. Controlling surface runoff in the soils with lower percentage of sand as well as hydraulic conductivity is essential to prevent sheet and inter‌-rill erosion in semi-arid soils.

Keywords


ابراهیمی، ن.ق. 1380. بررسی تأثیر بهره­برداری­های مختلف اراضی در فرسایش و رسوب حوزه آبخیز کهریز اراک. مجمومه مقالات مدیریت اراضی. فرسایش خاک و توسعه پایدار. اراک 2-4 بهمن 362-375.
احمدیان، س. ح. صفایی، م. و جعفری، ب. 1384. مقایسه فرسایش خاک در عرصه­های دیم­زار، دیم­زار رها شده، مرتع و جنگل در حوزه آبخیز کسیلیان، مازندران. مجموعه مقالات همایش سومین همایش ملی فرسایش و رسوب. تهران 6-9 شهریور 1384: 482-485.
اسدی، ح.، محمودی، ش. و حیدری، ا. ۱۳۸۶. اثر تشکیل اندوده سطحی بر دینامیـک فرسـایش ورقـه ای. مجموعـه مقـالات دهمین کنگره علوم خاک ایران، پردیس کشاورزی و منابع طبیعی دانشگاه تهران کرج. ۱۱۴۸-۱۱۴۹.
حسن زاده، ح، واعظی، ع، و محمدی، م. 1392. تغییرات رواناب در ابعاد کرت در نمونه های خاک با بافت مختلف تحت رخدادهای یکسان باران شبیه سازی شده. تحقیقات آب و خاک ایران (علوم کشاورزی ایران). 44(3): 245-254.
 خاکسارفرد، م. 1373 . تلفات آب و روشهای کاهش آن. نشریه علمی، اجتماعی و فرهنگی آب و فاضلاب کشور.9: 25-29.
واعظی، ع. و بخشی راد، ا. 1401. بررسی تاثیر ویژگیهای خاک بر تولید رواناب در سه زیرحوضه شمال غرب ایران. مهندسی و مدیریت آبخیز. 14(4): 450-464.
واعظی، ع. ر.، اکبری، س. و محمدی، م. ح. 1393. بررسی فرایندهای فرسایش بارانی در خاکدانه­ها تحت شرایط آزمایشگاهی در خاکهای آهکی شمال غرب زنجان. تحقیقات آب و خاک ایران. 45(1): 87-94.
واعظی، ع. ر.، کرد، م. و مهدیان، م. ح. 1396. تغییرپذیری زمانی تولید رواناب تحت تأثیر شیب در خاکهای با بافت مختلف. تحقیقات آب و خاک ایران. 48(1): 77-85.
Alberts, E. E., Nearing, M. A., Weltz, M. A., Risse, L. M., Pierson, F. B., Zhang, X. C., Laflen, J. M. and Simanton, J. R. 1995. Chapter 7. Soil component. In: DC Flanagan and MA Nearing (eds.), USDA-Water Erosion Prediction Project hillslope profile and watershed model documentation. NSERL Report No. 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana, 47907.
Adekalu, K.O., Olorunfemi, I.A. and Osunbitan, J.A. 2007.Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresource Technology. 98: 912–917.
Borselli, L., Torri, D., Poesen, J. and Salvador Sanchis, P. 2001. Effects of water quality on infiltration, runoff and interrill erosion processes during simulated rainfall. Earth Surf. Processes Landforms, 2: 329–342.
Bouyoucos, G. J. 1962. Hydromrter method improved for making particle size analysis of soils. Agronomy Journal, 56: 464- 466.
Chapman, H.D. and Pratt, P.F. 1978. Methods of Analysis for soils, plants and waters. Division of Agric. Sci. Univ. California, Berkeley, USA, 309.
Christiansen, J. E. 2013 Irrigation by Sprinkling California Agricultural Experiment Station Bulletin 670.
Duiker, S. W., Flanagan, D. C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena, 45:103-121.
Emadi, M., Baghernejad, M. and Memarian, H.R. 2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26: 452–457.
Evrendilek, F., Celik, I. and Kilic, S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of arid environments. 59(4): 743-752.
Hazelton, P. and Murphy, B. 2007. Interpreting soil test results. CSIRO publishing. p. 169.
Jourgholami, M. and Labelle, E.R. 2020. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Annals of Forest Science. 77(1): 1-11.
Karamage, F., Zhang, C., Liu, T., Maganda, A. and Isabwe, A., 2017. Soil erosion risk assessment in Uganda. Forests. 8(2): 52.
Kemper, W.D. and Rosenau, R.C. 1986. Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and Mineralogical Methods. 5: 425-442.
Kumar, A., Kanga, S., Taloor, A.K., Singh, S.K. and Đurin, B., 2021. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, 4: 61-74.
Pansu, M. and Gautheyrou, J. 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer Science and Business Media.
Perlman, H., 2016. USGS Water Science School. The World's Water: Water, water, everywhere.
Pérez-Latorre, F.J., de Castro, L. and Delgado, A. 2010. A comparison of two variable intensity rainfall simulators for runoff studies. Soil and Tillage Research. 107(1): 11-16.
Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical Methods. 5: 417-435.
Romos, M. C. and Nacci, S. 1998. Surface aggregate stability and its relationship with the soil erodibility in the Anoia-Pened (Spain). Proceedings 16th World Congress of Soil Science. Symposium 20, Ref. 1766, ISSS-AISS-IBG-SICS 1998, pp. 8, Publicacion en CD-ROM Cirad.
Romos, M. C., Nacci, S. and Pla, I. 2003. Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces. Department of Environment and Soil Science, University of Lleida, AlcaldeRoviraRoure, 191: 25198 Lleida, Spain. Catena. 53: 65-376.
Rowell, D. l. 1994. Methods and Application. Longman Group. Harlow, 345.
Salem, H.M., Ali, A.M., Wu, W. and Tu, Q., 2021. Initial effect of shifting from traditional to no-tillage on runoff retention and sediment reduction under rainfall simulation. Soil Research. 60(6): 547-560.
Santos, F.L., Reis. J. L., Martins, O.C., Castanheria, N.L. and Serralherio, R. P. 2003. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigation soils. Biosystems Engineering. 86(3): 355-364.
Shih, H. M. and Yang, C. T. 2009. Estimating overland flow erosion capacity using unit stream power. International Journal of Sediment Research, 24: 46-62.
Li, T., Shao, M.A., Jia, Y., Jia, X. and Huang, L. 2018. Profile distribution of soil moisture in the gully on the northern loess plateau, China. Catena, 171:460-468.
Thomas, G.W., 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5: 475-490.
Toy, T.J., Foster, G.R. and Renard, K.G., 2002. Soil erosion: processes, prediction, measurement, and control. John Wiley & Sons.
Truman, C.C. and Bradford, J.M., 1995. Laboratory determination of interrill soil erodibility. Soil Science Society of America Journal. 59(2):519-526.
Vaezi, A.R., Hasanzadeh, H. and Cerda, A., 2016. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. Catena. 142: 221-232.
Vilayvong, K., Yasufuku, N. and Ishikura, R. 2016. Rainfall-induced soil erosion and sediment sizes of a residual soil under 1D and 2D rainfall experiments. Procedia-Social and Behavioral Sciences, 218: 171-180.
Xue D., Zhou J., Zhao X., Liu C., Wei W., Yang X., Li Q., Zhao Y. 2021. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecological Indicators 121: p. 107013.
Zhang X., Song J., Wang Y., Deng W., Liu Y. 2021. Effects of land use on slope runoff and soil loss in the Loess Plateau of China: A meta-analysis. Science of the Total Environment. 755: 142418.
Zhang, G. H., Liu, B. Y., Liu, G. B., He, X. W., Nearing, M. A. 2003. Detachment of undisturbed soil by shallow flow. Soil Science Society of American Journal. 67: 713-719.