Modeling for Estimating Soil Moisture Dimensions in Drip Irrigation in Layer Soil Using Dimensional Analysis Method

Document Type : Original Article

Authors

1 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering & Technology, university of Tehran.

2 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering & Technology, university of Tehran, Karaj, Iran

3 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering & Technology, university of Tehran, Karaj, Iran

Abstract

In order to obtain the latera arrangements and distance between emitters in Drip irrigation, the soil moisture distribution should be considered. The variety in pore sizes and permeability of each layer beside the changes in influential forces (mostly matrix and gravity), cause the wetted pattern in layered soils to be different from homogeneous soil. The present research studies wetted zone in layered soils. In addition, some scientific-experimental equations with the help of dimensional analysis and the Buckingham π theorem were suggested to estimate the size of the wetted perimeter. There were six sets of experiments including different sequences of three soil textures (light, moderate and heavy) and under discharge 4 liters per hour for drip irrigation. The experiments were conducted in a physical model with transparent walls. At the end of irrigation, the lowest depth of advance was related to S2 (light to moderate to heavy). The highest wetted diameter was related to the S2 soil treatment (with the least depth of advance). The lowest wetted soil diameter at the end of irrigation was related to S6 treatment (moderate to heavy on light), which had almost more depth in this treatment than other treatments. The reason is the low difference between medium and heavy textures. That is, the delay time of the moisture front to cross the common boundary of the two layers was less. The information obtained in this study can be used to design and manage drip irrigation systems.

Keywords


عباس­پلنگی، ج. و آخوندعلی، ع. م. 1387. یک مدل نیمه تجربی به منظور تخمین ابعاد جبهه رطوبتی در آبیاری قطره­ای، تحت منبع نقطه­ای. مجله علوم آب و خاک. 12(44): 96-85.
علیزاده، ا. 1384. اصول و عملیات آبیاری قطره­ای. انتشارات آستان قدس رضوی. مشهد. 460 صفحه.
 مصطفی زاده، ب.، موسوی، س. ف. و شریف بیان الحق، م. ح. 1377. پیشروی جبهه رطوبتی از منبع نقطه­ای در سطوح شیبدار. علوم و فنون کشاورزی و منابع طبیعی 2 (3): 24-13.
میرزایی، ف.، لیاقت، ع. م.، سهرابی ملایوسف، ت. و امید، م. ح. 1384. نمون سازی جبهه رطوبتی خاک از منبع تغذیه خطی در آبیاری قطره­ای – نواری. مجله تحقیقات مهندسی کشاورزی. 6(23): 66-53.
Cook, F. J., Fitch, P., Thorburn, P. J., Charlesworth, P. B., Bristow, K. L. 2006. Modelling trickle irrigation: Comparison of analytical and numerical models for estimation of wetting front position with time. Environmental Modelling & Software, 21.9: 1353-1359.‏
Hachum, A.Y. 1973. Water movement in soil from a trickle source .M.Sc. Thesis, Utah State Univ., Logan, Uotah, USA.
Keller, J., Bliesner, R. D. 1990. Sprinkle and trickle irrigation, Avi Book pub. New York.
Khan, A. A., Yitayew, M., Warrick, A. W. 1996. Field evaluation of water and solute distribution from a point source. Journal of irrigation and drainage engineering, 122.4: 221-227.‏
Koo, R. C. J., Tucker, D. P. H. 1975. Soil moisture distribution in citrus groves under drip irrigation. Citrus industry.‏
Rahimzadegan, R. 1977. Water movement in field soil from a point source. M.sc . Thesis, Utah State Univ., Logan, Utah, USA.
Thabet, M.,  Zayani, K. 2008. Wetting patterns under trickle source in a loamy sand soil of south Tunisia. American-Eurasian Journal of Agricultural & Environmental Sciences, 3.01: 38-42.‏
Thorburn, P. J., Cook, F. J., Bristow, K. L. 2003. Soil-dependent wetting from trickle emitters: implications for system design and management. Irrigation Science, 22.3-4: 121-127.