Temporal and Spatial Flow discharge prediction using integrated artificial intelligence and pre and post-processing time series methods

Document Type : Original Article

Author

Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

Abstract

Forecasting of river discharge is a important aspect of efficient water resources planning and management. In this study, time series pre and post-processing methods along with support vector machine (SVM) and Gaussian process regression (GPR) kernel based approaches were used to estimate flow discharge of two natural river in the United States with two consecutive hydrometric stations. The first river contained about 2 years of data and in the second river 4 years of daily discharge data was used. Different models were defined based on hydraulic characteristics and the capability of integrated pre and post-processing methods in two states of inter-station and between-stations was investigated. For data pre-processing, the Discrete Wavelet Transform (DWT) method was first used. Then, the high-frequency sub-series were selected and re-decomposed using the Ensemble Empirical Mode Decomposition (EEMD). Finally, sub-series with higher energy were imposed as inputs for kernel-based models. Non-linear neural average (NNA) model was also used for data post-processing. The obtained results from the defined models showed the high accuracy of the integrated methods used in the research in estimating flow discharge. At both stations, the error percentage was reduced by approximately 20 to 25% using the integrated pre-post-processing methods compared to the intelligent kernel based models. It was observed that in the case of river flow prediction based on the station's own data, the RMSE error value of the model decreased from approximately 0.3 to 0.26 and in the case of using the previous station data decreased from 0.44 to 0.33. Due to the high capability and accuracy of the pre-processing methods used in this study, similar studies are recommended in other rivers of the country.

Keywords


اکبری الاشتی، ح.، و بزرگ حداد، ا. 1391. مقایسه‌ی شبیه‌ها و روش‌های مختلف پیش‌بینی ماهانه‌ی جریان مبتنی بر هوش مصنوعی. مهندسی منابع آب. 5(13): 37-55.
روشنگر، ک.، و قاسم­پور، ر. 1397. بررسی عملکرد روشهای کلاسیک و هوش مصنوعی در تخمین ضریب زبری در پیچانرودها. نشریه آبیاری و زهکشی ایران. 12(4): 811-822.
زمانی، ر.، احمدی، ف.، و رادمنش، ف. 1393. مقایسه روش‌های برنامه‌ریزی بیان ژن، سری زمانی غیرخطی، خطی و شبکه عصبی مصنوعی در تخمین دبی روزانه (مطالعه موردی: رودخانه کارون). آب و خاک (علوم و صنایع کشاورزی). 6: 1172-1182.
معروف­پور، س.، معروف­پور، ع.، و ثانی خانی، ه. 1396. شبیه‌‌سازی تبخیر-تعرق مرجع ماهانه بدون داده‌های اقلیمی با استفاده از محاسبات نرم در غرب و شمال‌غرب ایران. مهندسی منابع آب. 1(34): 37-50.
ناوه، ح.، خلیلی، خ.، عالمی، م.، و بهمنش، ج. 1391. پیش‌بینی جریان رودخانه توسط مدل سری زمانی غیرخطیBilinear  (مطالعه موردی: رودخانه­های باراندوز چای و شهر چای). علوم آب و خاک. 26(5): 1299-1307.
نیک­منش، م. 1394. پیش بینی آبدهی متوسط ماهانه با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تبدیلات موجک (مطالعه موردی: رودخانه کر- ایستگاه پل خان). نشریه پژوهش­های آب و خاک. 22(3): 231-239.
Adamowski, K., Prokoph, A., and Adamowski, J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrology Process, 23(18): 2686–2696.
Adamowski, J., and Sun, K. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390: 85-91.
Amirat, Y., Benbouzidb, M., Wang, T., Bacha, K., and Feld, G. 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133: 202–209.
ASCE, Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial Neural Networks in hydrology. I: Preliminary concepts. Hydrological Engineering, ASCE, 5(2): 115-123.
Chou, C. 2011. Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales. Stochastic Environmental Research and Risk Assessment, 6: 1401–1408.
Khalili, K., Ahmadi, F., Abghari, H., and Besharat, S. 2013. Stationary and nonlinearity analysis of river flow at different time scales (Case study: Barandouz-Chai River). 9th International River Engineering Conference, Ahwaz, Iran.
Kemp, P., Sear, D., Collins, A., Naden, P., and Jones, I. 2011. The impacts of fine sediment on riverine fish. Hydrological Processes, 25: 1800–1821.
Lau, KM., and Weng, HY. 1995. Climate signal detection using wavelet transform, How to make time series sing. Bulletin of the American Meteorological Society, 76: 2391-2402.
Makridakis, S., and Winkler, RL. 1983. Average of forecasts: some empirical results. Management Science, 29(9): 987–996.
Najah, A., El-Shafie, A., Karim, O.A., Jaafar, O., and El-Shafie, AH. 2011. An application of different artificial intelligences techniques for water quality prediction. International Journal of Physical Sciences, 6: 5298–5308.
Siviapragasam, C., and Liong, S. 2001. Rainfall and runoff forcasting with SSA-SVM approach. Hydroinformation, 3(5): 141-152.
Vapnik, V. 1995. The Nature of Statistical Learning Theory. Data Mining and Knowledge Discovery, pp. 1–47.
Wu, Z., and Huang, N. 2004. A study of the characteristics of white noise using the empirical mode decomposition method, Proc RS Lond 460A: 1597–1611.