Calculation of Hydraulic Gradient within Horizontal Heterogeneous Drainage Materials Using Particle Swarm Optimization (PSO) Algorithm

Document Type : Original Article

Authors

1 PhD Student of Hydraulic Structures, Department of Civil Engineering, University of Zanjan, Zanjan, Iran.

2 Associate Professor, Department of Civil Engineering, Zanjan University, Zanjan, Iran

Abstract

The analysis of steady-state flow within rockfill materials is performed using two methods of gradually varied flow theory that analyzes the flow as one-dimensional and the Parkin equation that analyzes the flow as two-dimensional. The calculation of the hydraulic gradient (i) is of great importance in both methods. Most of the research in this area has been done in homogeneous rockfill materials and limited studies have been carried out on the flow in heterogeneous rockfill materials. In this study, we used the results of experiments in homogeneous and horizontal heterogeneous rockfill materials with three layers of aggregates with large, medium and small size. In the experimental data used in the present study, changes in hydraulic gradient relative to the flow velocity in each of the three homogeneous layers were available separately and also the changes in the horizontal heterogeneous media consisting of three layers were available separately. Due to the fact that in order to form a horizontal heterogeneous rockfill media, large, medium, and small homogeneous layers are placed on top of each other, respectively, in the approach presented in the present study, the data of the steady flow of homogeneous media are placed in the same order in the Particle Swarm Optimization (PSO) algorithm to optimize the coefficients of the binomial equation (a, b) and consequently the calculation of hydraulic gradient. In other words, in the present study, the values of the coefficients a, b, equivalent to the horizontal heterogeneous media, depending on how the homogeneous layers are placed on top of each other and only using the data of steady flow in the homogeneous media (large, medium and small size) Optimized. The results show that the difference of mean relative error (MRE) the approach presented in the present study than conditions where flow data in a horizontal heterogeneous media are directly used to calculate the coefficients a and b and consequently the hydraulic gradient, is 1.38 percent.

Keywords


بازرگان، ج.، و بیات، ح.، 1381. تعیین ضرایب معادله غیر خطی جریان در پی‌های آبرفتی درشت دانه. نشریه استقلال. 21(1): 101-112.
بازرگان، ج.، و شعاعی، م. 1389. تحلیل جریان‌های غیر دارسی در مصالح سنگریزه‌ای با استفاده از تئوری جریان‌های متغیر تدریجی. نشریه مهندسی عمران و نقشه‌برداری.‏ 44(2): 131-139.
حسنوند، ک.، و محمدولی سامانی، ج. 1398. تعیین ضریب آب گذری معادل در سدهای پاره سنگی دو لایه افقی و دو لایه عمودی. علوم و مهندسی آبیاری. 42(3): 75-88.
Ahmed, N. and Sunada, D. K. 1969. Nonlinear flow in porous media. Journal of the Hydraulics Division, 95(6): 1847-1858.‏
Arbhabhirama, A. and Dinoy, A.A. 1973. Friction factor and Reynolds number in porous media flow. Journal of the Hydraulics Division. ASCE. 99(6): 901-915.
Asiaban, P., Amiri Tokaldany, E., and Tahmasebi Nasab, M. 2015. Simulation of water Surface profile in vertically stratified rockfill dams. International Journal of Environmental Research. 9(4):1193-1200.
Bari, R. and Hansen, D. 2002. Application of gradually-varied flow algorithms to simulate buried streams. Journal of Hydraulic Research. 40(6): 673-683.
Di Cesare, N. Chamoret, D. and Domaszewski, M. 2015. A new hybrid PSO algorithm based on a stochastic Markov chain model. Advances in Engineering Software. 90: 127-137.
Di Nucci, C. 2018. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face. Comptes Rendus Mécanique. 346(5): 366-383.
Eberhart, R. and Kennedy, J. 1995. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). IEEE.‏
Ergun, S. 1952. Fluid Flow through Packed Columns. Chemical Engineering Progress. 48: 89–94.
Forchheimer, P. 1901. Wasserbewagung Drunch Boden, Z.Ver, Deutsh. Ing., 45: 1782-1788.
Hansen, D., Garga, V.K., and Townsend, D.R. 1995. Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Canadian Geotechnical Journal. 32(2): 223-232.‏
Hosseini, S.M. 1997. Development of an unsteady non-linear model for flow through coarse porous media. Ph. D. Thesis. Dissertation University of Guelph. Canada.
Hosseini, S.M. and Joy, D.M. 2007. Development of an unsteady model for flow through coarse heterogeneous porous media applicable to valley fills. International Journal of River Basin Management. 5(4): 253-265.
Leps, T.M. 1973. Flow through rockfill, Embankment-dam engineering casagrande volume edited by Hirschfeld, RC and Poulos, SJ.‏
McWhorter, D.B., Sunada, D.K. and Sunada, D.K. 1977. Ground-water hydrology and hydraulics. Water Resources Publication.‏LLC. U.S.Library.
Sadeghian, J. Khayat Kholghi, M. Horfar, A. and Bazargan, J. 2013. Comparison of binomial and power equations in radial non-darcy flows in coarse porous media. Journal of Water Sciences Research. 5(1): 65-75.‏
Scheidegger, A. E. 1958. The physics of flow through porous media. Soil Science. 86(6): 355.‏
Sedghi-Asl, M. and Ansari, I. 2016. Adoption of extended dupuit–Forchheimer assumptions to non-darcy flow problems. Transport in Porous Media. 113(3): 457-469.
Stephenson, D.J. 1979. Rockfill in hydraulic engineering. Elsevier scientific publishing compani.‏ Distributors for the United States and Canada.
Sidiropoulou, M.G., Moutsopoulos, K.N., and Tsihrintzis, V.A. 2007. Determination of Forchheimer equation coefficients a and b. Hydrological Processes: An International Journal. 21(4): 534-554.
Shi, Y. and Eberhart, R. 1998. A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69-73). IEEE.‏
Ward, J.C. 1964. Turbulent flow in porous media. Journal of the hydraulics division. 90(5): 1-12.‏