Investigation of local scour downstream of parallel sluice gates

Document Type : Original Article

Authors

1 water engineering dep.,faculty of agriculture , Urmia university, Urmia, Iran

2 WATER ENG. DEPT. URMIA UNIVERSITY

3 Associate Professor of River Engineering, Department of Irrigation & Reclamation Engineering, University of Tehran, Karaj Campus, Karaj 3158777871, IRAN

4 Department of Physics and Engineering, College of Health, Engineering and Science, Slippery Rock University, Pennsylvania, USA

Abstract

Local scour downstream of the hydraulic structures is of great importance. In wide channels, a set of multi gates instead of a single gate may be responsible for transferring water and adjusting upstream water level due to difficulty in gate maneuvering, economic considerations, and ease of movement. Operating parallel sluice gates can create different scenarios owing to clogging or failure in some gates. This study was aimed to assess the effect of different cases of parallel sluice gates operational management, gate opening to channel width ratio, and length of the separator walls on local scour development downstream of parallel sluice gates in different operations. Five operational scenarios were investigated on three parallel sluice gates. The results of the present study showed that the dimensions of the scour hole are a function of the symmetrical and asymmetrical operation of the gates. By reducing the gate opening to channel width ratio, the dimensions of the scour hole increased compared to the classical hydraulic jump mode. Maximum scour depth in the symmetric operational management scenario (B) and the asymmetric scenario (A), increased by 120% and 43%, respectively, compared to the ABC scenario. Increasing the length of the separating walls can be a suitable option to control the dimensions of the scour hole in different operations. Owing to a 20% increase in the length of the separator walls, the maximum scour depth decreased by 68% in the maximum Froude number (8.6) and 122% in the minimum Froude number (4.5) in scenario B. These percentages for scenario A are equal to 17 and 58, respectively. In addition, relations were presented to estimate the dimensions of scour hole in the symmetrical and asymmetrical operation of the parallel gates.

Keywords


حمیدی­فر، ح.، امید، م.ح. و نصرآبادی، م. 1389. آبشستگی موضعی در پایین‌دست دریچه کشویی. نشریه آب و خاک. 24(4): 736-728
 صفر زاده، ا.، و باهر طالاری، ط. 1396. بررسی علل تخریب حوضچه­های پایین­دست سد میل مغان با استفاده از مدل‌سازی هیدرودینامیک محاسباتی. نشریه هیدرولیک. 12(2): 13-34.
خلیلی شایان، ح.، فرهودی، ج. و وطن­خواه، ع.، 1399. تحلیل نسبت عمق­های ثانویه و طول پرش هیدرولیکی واگرای ناگهانی در شرایط توسعه‌یافتگی متقارن و نامتقارن. نشریه هیدرولیک. 15(1): 75-95.
Aminpour, Y., Farhoudi, J. and Shayan, H. 2018. Characteristics and time scale of local scour downstream stepped spillways. Scientia Iranica. Transaction A, Civil Engineering. 25(2): 532-542.
Breusers, H. N. C. 1966. Conformity and time scale in two-dimensional local scour. In: Proceedings of the symposium on model and prototype conformity. Hydraulics Research Laboratory, Poona, India; 1-8.
Balachandar, R., Kells, J.A. and Thiessen, R.J. 2000. The effect of tailwater depth on the dynamics of local scour. Canadian Journal of Civil Engineering. 27(1):138-150.
Bijankhan, M., Kouchakzadeh, S. and Belaud, G. 2014. Parallel jets emerging from multiple gates, distinguishing flow condition. 5th international junior researcher and engineer workshop on hydraulic structures.
Bijankhan, M. and Kouchakzadeh, S. 2015. Free hydraulic jump due to parallel jets. Journal of Irrigation and Drainage Engineering. 141(2): 04014049.
Chatterjee, S. S., Ghosh, S. N., & Chatterjee, M. 1994. Local scour due to submerged horizontal jet. Journal of Hydraulic Engineering. 120(8): 973-992.
Das B. M. 1983. Advance Soil Mechanics. Hemisphere Publishing Corporation.  Washington. 511 p.
Dargahi, B. 2003. Scour development downstream of a spillway. J. of Hydraulic Res, 41: 417-426.
Dey, S. and Sarkar, A. 2006. Scour downstream of an apron due to submerged horizontal jets. Journal of Hydraulic Engineering. 132(3):246257.
Farhoudi, J, Smith, KVH. 1982. Time scale for scour downstream of hydraulic jump, Journal of Hydraulic Engineering, ASCE, 10: 1147-1162.
Gamal, M. Mostafa, Abdelazim, M. Negm, Osama, K. Saleh and Mohamed F. Sauida. 2009. Flow separation downstream of main barrages. 6 th int. conference on environmental hydrology and 1 st symp coastal and port engineering.
Oliveto G. Comuniello V. and Balbule T. 2011. Time-dependent local scour downstream of positive-step stilling basins. Journal of Hydraulic Research. 49(1):105-112.
Raudkivi, A. J. 1998. Loose boundary hydraulics. A. A, Balkema. Rotterdam. The Netherlands. 498 p.
Sauida, M.F., 2013. Reverse flow downstream multi-vent regulators. Ain Shams Engineering Journal. 4(2): 207-214.
Sauida, M.F. 2014. Calibration of submerged multi-sluice gates. Alexandria Engineering Journal. 53(3): 663-668.
Shayan, H.K. and Farhoudi, J. 2015. Local scour profiles downstream of adverse stilling basins. Scientia Iranica. Transaction A, Civil Engineering. 22(1):1-14
Scorzini, A.R., Di Bacco, M. and Leopardi, M. 2016. Experimental investigation on a system of crossbeams as energy dissipator in abruptly expanding channels. Journal of Hydraulic Engineering, 142(2): 06015018