Evaluation of the effect of some temperature and radiation methods for estimation of reference evapotranspiration (ETO) on maize actual evapotranspiration and biomass

Document Type : Original Article

Authors

1 Dept. of Water Sciences and Engineering, Imam Khomeini International University

2 M.Sc. graduated in Irrigation and Drainage Eng., Water science and engineering Dept., Faculty of agriculture and natural resources, Imam Khomeini international university, Qazvin, Iran

Abstract

Iran is located in the arid and semi-arid belt of the world, which is characterized by low rainfall, thunderstorms, flood flows, and high evapotranspiration. So, quantitative evaluation of evapotranspiration on a regional scale is necessary for water resources management, crop production, and environmental assessments in irrigated lands. In recent years, many crop models are developed for simulation of crop growth and yield in various fields and irrigation managements. These models can simulate crop growth and crop yield. AquaCrop model is a pervasive model and is developed by FAO that can be used in growth simulating and modeling of many crops. In this study, the effect of different methods for estimation of reference evapotranspiration (ETo) on actual evapotranspiration (ET) and biomass at five stations by AquaCrop model was studied and evaluated. For this purpose, the reference evapotranspiration rate was estimated by using two temperature methods and three radiation methods and the results were statistically evaluated by the reference method FAO-56. Based on the evaluation, temperature method, the Blaney-Criddle had for both parameters of ET and biomass in five stations with R2 value greater than 0.5 (strong), moderate to excellent NRMSE and NS close to one, the Turc and the Makkink, radiation methods, with R2 greater than 0.5, excellent NRMSE and NS equal to 0.99 for biomass in five stations were the best. Among the radiation methods for ET, the Priestley-Taylor method had medium and strong R2, good to medium NRMSE and NS equal to 0.96 in Qazvin and Mashhad stations and the Turc method with R2 greater than 0.5, excellent NRMSE and NS equal to 0.98 for Urmia had an optimal and better simulation compared to other estimation methods. Among the studied radiation methods, no suitable method was found to evaluate ET for Rasht and Yazd stations.

Keywords


خلیلی، ن.، داوری، ک.، علیزاده، ا.، کافی، م.، انصاری، ح. 1394. شبیه سازی عملکرد گندم دیم با استفاده از مدل گیاهی آکواکراپ، مطالعه موردی ایستگاه تحقیقات کشاورزی دیم سیساب، خراسان شمالی. مجله آب و خاک. 28(5): 939-930.
دهقانی سانیج، ح.، اخوان، س.، رمضانی اعتدالی، ه.، کنعانی، ا.، نخجوانی مقدم، م.م. 1399. بررسی کارایی مدل AquaCrop در شبیه‌سازی تبخیر-تعرق ذرت و اجزای آن در سامانه­های آبیاری میکرو تحت شرایط مالچ. نشریه آبیاری و زهکشی ایران. 14 (5): 1499-1513.
رحیمی خوب، ح.، ستوده نیا، ع.، مساح بوانی، ع.ر. 1393. واسنجی و ارزیابی مدل AquaCrop برای ذرت علوفه‌ای منطقه قزوین. نشریه آبیاری و زهکشی ایران. 8 (1) : 115-108.
سعیدی، ر.، رمضانی اعتدالی، ه.، ستوده نیا، ع.، نظری، ب.، کاویانی، ع. 1400. ارزیابی مدل AquaCrop در برآورد روند تغییرات رطوبت خاک، تبخیر-تعرق و عملکرد ذرت، تحت تنش‌های شوری و حاصلخیزی. تنش‌های محیطی در علوم زراعی. 14 (1): 195-210. doi: 10.22077/escs.2020.2473.1652
صفری، ف.، کاویانی، ع.، عزیزیان، ا.، رمضانی اعتدالی، ه. 1398. ارزیابی دو روش دمایی برآورد تبخیروتعرق مرجع در برخی از شهرهای ایران. پانزدهمین همایش ملی آبیاری و کاهش تبخیر،کرمان، https://civilica.com/doc/954726.
صفری، ف.، کاویانی، ع.، عزیزیان، ا.، رمضانی اعتدالی، ه. 1398. ارزیابی روش­های مختلف برآورد تبخیروتعرق مرجع گیاه در برخی از شهرهای ایران. چهارمین کنگره بین المللی توسعه کشاورزی، منابع طبیعی، محیط زیست و گردشگری ایران، تبریز. https://civilica.com/doc/972844.
ضیایی، غ.، بابازاده، ح.، عباسی، ف.، کاوه، ف. 1393. بررسی عملکرد مدل‌های AquaCrop و CERES-Maize در برآورد اجزای بیلان آب خاک و عملکرد ذرت. تحقیقات آب و خاک ایران. 45 (4): 445-435.
عبدالله زاده، م.، رمضانی اعتدالی، ه.، آبابایی, ب.، نظری، ب. 1398. تعیین تبخیر و تعرق واقعی و نیاز خالص آب آبیاری محصولات مهم کشاورزی دشت مغان با استفاده از مدل آکواکراپ. مجله نیوار. 43 (104-105): 113-122. doi: 10.30467/nivar.2019.141476.1101.
عصاره، ع.، داودی، ح. 1393. ارزیابی برخی از روش­های تعیین تبخیروتعرق پتانسیل در شهرستان امیدیه. فصلنامه تخصصی علوم و مهندسی آب. 10 (4): 63-74.
قربانیان کردآبادی، م.، لیاقت، ع.، وطن‌خواه، ا.، نوری، ح. 1393. شبیه‌سازی عملکرد و تبخیر و تعرق ذرت علوفه‌ای با استفاده از مدل AquaCrop. نشریه حفاظت منابع آب و خاک. 4 (2): 64-47.
Allen, R.G, Pereira, L.S., Raes, D. and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop requirement. Irrigation and Drainage Paper.No.56, FAO, Rome, Italy, 300 pp.
Ayars, J.E., Fulton, A. and Taylor, B. 2015. Subsurface drip irrigation in California-Here to stay? Agric Water Manage. 157: 39-47.
Farahani, H.J., Izzi, G. and Oweis, T.Y. 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal. 101(3): 469–476.
Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE. 50(4): 1211-1250.
Haydarinia, M., Naseri, A.A. and Broomabd-Nasab, S. 2012. Investigate the possibility of application of AquaCrop model for irrigation scheduling of sunflower in Ahwaz. Journal of Water Resources. 5(1), 39-41.
Heng, L.K., Hsiao, T., Evett, S., Howell, T. and Steduto, P. 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal. 101(3): 488–498.
Jamieson, P.D., Porter, J.R., and Wilson, D.R. 1991. A test of computer simulation model ARG-WHEAT1 on wheat crops in New Zealand. Field Crops Res. 27, 337-350.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T. 2003. The DSSAT cropping system model. European Journal of Agronomy. 18(3): 235–265.
Junior, W. de C., Loireau, M., Fargette, M., Filho, B. C., and Wélé, A. 2017. Correlation between soil erodibility and satellite data on areas of current desertification: a case study in Senegal. Ciência & Trópico. 41(2): 51-66.
Masasi, B., Taghvaeian, S., Gowda, P.H., Warren, J. and Marek, G. 2019. Simulating soil water content, evapotranspiration, and yield of variably irrigated grain sorghum using AquaCrop. JAWRA Journal of the American Water Resources Association. 55(4): 976-993.
Mebane, V.J., Day, R.L., Hamlett, J.M., Watson, J.E. and Roth G.W. 2013. Validating the FAO AquaCrop model for rainfed maize in Pennsylvania. Agronomy Journal. 105 (2), 419–427.
Moran, M.S., Scott, R.L., Keefer, T.O., Emmerich, W.E., Hernandez, M., Nearing, G.S., Paige, G.B., Cosh, M.H. and O’Neill, P.E. 2009. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology. 149: 59-72.
Nandagiri, L. and Kovoor, G.M. 2005. Sensitivity of the food and agriculture organization Penman-Monteith evapotranspiration estimates to alternative procedures for estimation of parameters. Journal of Irrigation and Drainage Engineering. 131(3): 238-248.
Nash, J.E. and Sutcliffe, J. 1970. River flow forecasting through conceptual models, Part 1, A discussion of principles. Journal of Hydrology. 10, 282–290.
Newman, B.D., Wilcox, B.P., Archer, S.R., Breshears, D.D., Dahm, C.N., Duffy, C.J., McDowell, N.G., Phillips, F.M., Scanlon, B.R. and Vivoni, E.R. 2006. Ecohydrology of water-limited environments. A scientific vision. Water Resources Research. 42: 1–15.
Smith, M. 1992. CROPWAT: A computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No. 46. FAO, Rome, Italy.
Stricevic, R., Dzeletovic, Z., Djurovic, N., and Cosic, M. 2014. Global change biology bioenergy. doi 10.111/gcbb. 12206.
Stöckle, C.O., Donatelli, M. and Nelson, R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy. 18(3–4), 289–307.
Van Diepen, C.A., Wolf, J., van Keulen, H. and Rappoldt, C. 1989. WOFOST: a simulation model of crop production. Soil Use and Management. 5(1), 16–24.