Investigating the effect of suitable probability distribution of runoff on the characteristics and classes of hydrological drought using ERA5 model data in different climates of the country

Document Type : Original Article

Authors

1 Department of Water Science and Engineering,, Faculty of Agriculture and Environment,, Arak University,, Arak, ,Iran

2 Assistance Professor of Water Engineering, College of Agriculture, Arak University., Arak., Iran

3 Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran

Abstract

The most important method for monitoring hydrological drought is the use of drought indices based on river flow. These indices are generally based on the assumption that the river flow volume data series follows the gamma distribution and the principle of equal probability transfer. Therefore, in this research, the aim is to investigate the suitable distribution of monthly flow data and its effect on the characteristics and classes of drought using the standardized runoff index (SRI) in different climates of the country. For this purpose, monthly data of precipitation, temperature, evaporation and transpiration and runoff were collected from 40 synoptic stations across the country during the period of 1979-2020. Then, from the reanalyzed ERA5 model of the ECMWF datasets with a spatial resolution of 0.5 x 0.5, the mentioned data and runoff during the selected period have been extracted. Statistics such as correlation coefficient (R), standardized mean square error (NRMSE) and mean skew error (MBE) are used to compare model data with observational data. In the following, the SRI index was calculated for two time scales of 3 and 12 months based on the fitted Gamma distribution and the best distribution, and drought characteristics including intensity, duration and frequency were calculated for them. The results of ERA5 model data evaluation indicate more accuracy of temperature variables, evapotranspiration potential and precipitation with average NRMSE equal to 0.09, 0.62 and 1.02 respectively. Considering the change of drought classes by changing the distribution used in the index, the results of this research show the necessity of fitting and choosing the best distribution in the calculation of hydrological drought indices.

Keywords


حقیقت‌جو،پ. 1380. بررسی تابع چگالی احتمال بارندگی های ماهانه و سالانه ایستگاه های قدیمی ایران. مجله علوم کشاورزی و منابع طبیعی. (3)9: 43-41.
غفوریان،ر.، گردنوشهری،ر. و رنگ‌آور، ع. 1390. ارزیابی شاخص SRI  در تعیین خشکسالی هیدرولوژیکی رودخانه زشک خراسان رضوی. کنفرانس خشکسالی و تغییر اقلیم. اردیبهشت ماه، مرکز تحقیقات کم آبی وخشکسالی کرج.
مساعدی،ا.، قبایی‌سوق،م. 1394. تصحیح شاخص بارش استاندارد شده  (SPI)بر اساس انتخاب مناسبترین تابع توزیع احتمال. نشریه آب و خاک(علوم و صنایع کشاورزی). (5)25: 1216-1206.
رحیمی، د.، محمدی،ز. 1396. بررسی خشکسالی هیدرولوژیکی حوضۀ آبخیز سد زاینده رود با شاخص SWSI. فصلنامه آمایش جغرافیایی فضا .(25)7: 233-221.
قبادی،س.، عبقری،ه. وعرفانیان،م. 1396. پایش توزیع مکانی و زمانی شدت خشکسالی‌ با استفاده از isoSPI و isoSDI در غرب دریاچه ارومیه. مجله پژوهش‌های حفاظت آب و خاک. 24(5): 127-111.
وکیلی‌فر،ع.، اسدی،ا.، ابراهیمی،ک.، فاخری‎فرد،ا.و دربندی،ص. 1396. بررسی ارتباط زمانی رخداد خشکسالی هواشناختی و خشکسالی آب‌های سطحی (مطالعه موردی: حوضه بیلوردی-دوزدوزان). دانش آب و خاک. (2)27:15-1.
فرسادنیا،ف.، قهرمان،ب.، مدرس،ر.و مقدم‌نیا،ع. 1397. تحلیل فراوانی خشکسالی هیدرولوژیک حوضه کرخه با استفاده از تحلیل آماری دو متغیره.نشریه علوم آب و خاک(علوم و فنون کشاورزی و منابع طبیعی).(3)22: 355-339.
نادری، ک.، مقدسی، م،. شکری،ا .و احمدی، ف. 1400. تحلیل اثر طول دوره آماری بر احتمال وقوع خشکسالی با استفاده از رودیکرد توابع مفصل (مطالعه موردی : ایستگاه سینوپتیک اراک). تحقیقات آب و خاک ایران، (52)9: 2440-2427.
Ghasemnezhad, F., Bazrafshan, O., Fazeli, M,. Parvinnia, M. and Singh, V. 2021. Uncertainty Analysis of Hydrological Drought due to Record Length, Time Scale, and Probability Distribution Functions Using Monte-Carlo Simulation Method.
Hersbach, H,. De Rosnay, P,. Bell, B., Schepers, D., Simmons, A., Soci, C. and Zuo, H. 2018. Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report Series. 27: 63 pp.
Khanmohammadi, N., Rezaie, H. and Behmanesh, J. 2022. Investigation of drought trend on the basis of the best obtained drought index. Water Resources Management. 36(4): 1355-1375.
Lloyd‐Hughes, B., Saunders, M. A. 2002. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society. 22(13): 1571-1592.
Pourkarimi, Z., Moghaddasi, M., Mohseni Movahed, A. and Delavar, M. 2018. The Effects of Climate Change on the Hydrological and Agricultural Drought Characteristics Zarinehrud Basin Using SRI and SSWI Indices and SWAT Model. Iranian Journal of Soil and Water Research. 49(5): 1145-1157.
Shiau, J. T. 2020. Effects of gamma-distribution variations on SPI-based stationary and nonstationary drought analyses. Water Resources Management. 34(6): 2081-2095.
Silver, B. J. 2003. Forces of labor: workers' movements and globalization since 1870. Cambridge University Press.
Sönmez, F. K., Koemuescue, A. U., Erkan, A. and Turgu, E. 2005. An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation Doesken, N.J., T.B. McKee and J. Kleist, 1991: Development of a Surface Water Supply Index for the Western United States. Climatology Report 91-3, Colorado Climate Center, Colorado State University. Index. Natural Hazards. 35(2): 243-264.
Tsakiris, G., Pangalou, D., Vangelis, H.2007. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management. 21: 821-833.
Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A. and Wen, F. 2007. Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology: A Journal of the Royal Meteorological Society. 27(1): 65-79.
Zhao, R., Wang, H., Zhan, C., Hu, S., Ma, M. and Dong, Y. 2020. Comparative analysis of probability distributions for the Standardized Precipitation Index and drought evolution in China during 1961–2015. Theoretical and Applied Climatology. 139(3): 1363-1377.