Investigation the effect of biochar and irrigation water salinity on yield indicators and protein percentage of quinoa in deficit irrigation conditions

Document Type : Original Article

Authors

1 university of zabol

2 Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan

Abstract

This research was conducted with the aim of investigating the effects of salinity and biochar on quinoa plant in deficit irrigation conditions. The experiment was carried out in a factorial and completely randomized design with three replications in greenhouse conditions. The treatments include three irrigation water treatments (60, 80 and 100% of the water requirement, ), three biochar treatments (0, 2 and 4% by weight of potting soil, ) and three the water quality treatment was (1, 4, and 7 dS/m, ). From the time of planting until the establishment of seedlings, all the pots were fully irrigated with fresh water and up to the agricultural capacity. Then the pots were weighed every other day and at each level of biochar and salinity, the deficit irrigation to the level of humidity was calculated based on the changes in the pot's weight. At the end of the growing season, the seeds were harvested from the spike. The index parameters of leaf area, spike weight, seed yield, water consumption efficiency and seed protein percentage were measured carefully in each pot. . With the reduction of irrigation water, the amount of quantitative parameters and plant yield decreased. The use of biochar up to the level of 2 percent by weight of the soil increased the parameters. The use of biochar at the level of 2 and 4% by weight increased the seed protein by 23.5 and % 12.08 respectively, compared to the control treatment. there was no significant difference in yield between 2 and 4 dS/m salinity treatment and the percentage of seed protein in 4 dS/m salinity was higher than 2 dS/m, it is possible to use water with 4 dS/m salinity for quinoa irrigation.

Keywords


پاپن، پ.، معزی، ع.ا.، چرم، م. و رهنما، ا. 1399. تأثیر کود نیتروژن بر برخی صفات رشدی و عملکرد گیاه کینوا در شرایط آبیاری با زه­آب نیشکر. تحقیقات آب و خاک ایران، 51 (6):1455-1442.
پورمنصور، س.، رزاقی، ف.، سپساخواه، ع. و موسوی، س. ع. 1398. بررسی رشد و محصول گندم تحت سطوح مختلف بیوچار و کم­آبیاری در شرایط گلخانه­ای. مدیریت آب و آبیاری، 9 (1): 28-15.
پیری، ح.، انصاری، ح. و پارسا، م. 1395. بررسی عملکرد کمی و کیفی سورگوم علوفه ای در سطوح مختلف شوری و آب آبیاری در سیستم آبیاری قطره ای زیرسطحی. پژوهش آب در کشاورزی، 30(4):482-468.
جمالی، ص. و انصاری، ح. 1398. اثر کیفیت آب و مدیریت آبیاری روی رشد و عملکرد گیاه کینوا. پژوهش آب در کشاورزی، 33 (3):351-340.
جمالی، ص.، شریفان، ح.، هزارجریبی، ا. و سپهوند، ن.ع. 1395. بررسی تأثیر سطوح مختلف شوری بر جوانه زنی و شاخص­های رشد دو رقم گیاه کینوا. حفاظت منابع آب و خاک، 6 (1):98-88.
حیدری شریف آبادی، ح.1380. گیاه و شوری. انتشارات موسسه تحقیقات جنگل ها و مراتع، تهران. ص 199.
زمانی، غ.ر.، کشکولی، ح.ع.، شهیدی، ع. و قریشی، س.غ. 1386. اثرات شوری و رژیم­های مختلف آبیاری بر عملکرد، اجزاء عملکرد و درصد پوتئین دانه در دو رقم گندم. پژوهش کشاورزی، 7(2):69-55.
سرمدنیا، غ. ح. و کوچکی، ع. 1386. فیزیولوژی گیاهان زراعی. انتشارات جهاد دانشگاهی مشهد، ص 400.
محکمی، ع.، یزدان­پناه، ن. و سعیدنژاد، ا.ح. 1401. اثر کاربرد ورمی­کمپوست و بیوچار بر خصوصیات مرفو فیزیولوژیک کینوا در شرایط تنش خشکی. تحقیقات آب و خاک ایران، 53 (1):140-130.
میر، ا.، پیری، ح. و ناصرین، ا. 1400. اثرات سطوح مختلف بیوچار گندم و تنش آبی بر ویژگی­های کمی و کیفی کارلا (خربزه تلخ) در شرایط گلدانی. پژوهش آب در کشاورزی، 35 (2):185-170.
نباتی، ج.، کافی، م.،  نظامی، ا.، رضوانی­مقدم، پ.، معصومی، ع. و زارع مهرجردی، م. 1393. اثر زمان اعمال سطوح مختلف تنش شوری بر برخی ویژگی­های کمی و کیفی علوفه کوشیا. پژوهش­های زراعی ایران، 12(4):620-613.
Algosaibi, A. M., El-Garawany, M. M., Badran, A. E. and Almadini, A. M. 2015. Effect of irrigation water salinity on the growth of Quinoa plant seedlings. Journal of Agricultural Science. 7(8): 205.
Aly A.A., Al-Barakah F.N. and El-Mahrouky, M.A. 2018. Salinity Stress Promote Drought Tolerance of Chenopodium Quinoa Willd. Communications in Soil Science and Plant Analysis. 49(11): 1331-1343.
Anjum, S. A., Xie, X. Y. Wang, L.C., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032
Bauder, T. A., Waskom, R. M. and Davis, J. G. 2006. Irrigation water quality criteria. Colorado State University Cooperative Extension Fact Sheet 0.506.
Berek, A. K., Hue, N. and. Ahmad, A. 2011. Beneficial use of biochar to correct soil acidity. The Food Provider. Available at Website http:// www.ctahr.hawaii.edu/huen/nvh/biochar. Biol. 16:1366-1379. Black carbon: downward migration, leaching and soil respiration. Glob. Change.
Bilalis, D., Kakabouki, I., Karkanis, A., Travlos, I., Triantafyllidis, V. and Dimitra, H.E.L.A. 2012. Seed and saponin production of organic quinoa (Chenopodium quinoa Willd.) for different tillage and fertilization. Notulae Botanicae Horti Agrobotanici Cluj Napoca. 40(1):42-46.
Croser, C., Renault, S., Franklin, J. and Zwiazek, J. 2001. The effect of salinity on the emergence and seedling growth of piceamorian, picceaglausa and pinusbanksiana. Environmental pollution. 115:6-16.
Dubey R.S. 1999. Protein synthesis by plants under stressful conditions. Handbook of plant and crop stress, 2, pp.365-397.
Elewa, T. A., Sadak, M. S. and Saad, A. M. 2017. Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research. 14(1): 21-33.
Fathi Gerdelidani, A. and Mirseyed, H. 2015. Different aspects of biocurrent effects in improving soil quality. International Conference on Applied Research in Agriculture, Tehran, 22 May: 1-12.
Glaser, B. and Birk, J.J. 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta. 82: 39-51
Hakan, O. 2002. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapseed cultivars. Agronomy Journal. 19: 453-463.
Huang, C.H. Zong, L., Buonanno, M., Xue, X., Wang, T. and Tedeschi, A. 2012. Impact of saline water irrigation on yield and quality of melon (Cucumismelo cv.Huanghemi) in northwest China: European Journal of Agronomy 43: 68-76.
Ibrahim, O. M., Bakry, A. B., El Kramany, M. F. and Elewa, T. A. 2015. Evaluating the role of biochar application under two levels of water requirements on wheat production under sandy soil conditions. Global Journal of Advanced Research, 2(2): 411- 418.
Jacobsen, S.E., Monteros, C., Christiansen, J. L., Bravo, L.A., Corcuera, L.J. and Mujica, A. 2005. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological‌stages. European journal of Agronomy. 22: 131–139..
Jayme-Oliveira, A., Ribeiro Júnior, W.Q., Ramos, M.L.G., Ziviani, A.C. and Jakelaitis, A. 2017. Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesq.
Koyro, H. W. and Eisa, S. S. 2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa willd. Plant and Soil, 302(1-2): 79-90.
Li, J., Li, Y. E., Wan, Y., Wang, B., Waqas, M. A., Cai, W. and Gao, Q. 2018. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma, 315: 1-10.
Major, J., Rondon, M., Molina, D., Riha, S.J., and Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333:117–128.
Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist. 167:645-663
Nabizadeh Marvdust, M.R., Kafi, M. and Rashed-MoHasel, M.H. 2003. Effect of salinity on growth, yield, collection of mineral and percentage of green cumin essence. Journal of Agricultural Sciences. 138: 53-60
Netondo, G.F., Onyango, J.C. and Beck. E. 2004. Sorghum and salinity: II. Gasexchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science.44: 806–811.
Parida, A. K. and Das, A. B. 2005. Salt tolerance and salinity effects on plants: Areview. Ecotoxicol. Environ. Safety 60:324-349.
Payero, J.O., Melvin, S.R., Irmak, S. and Tarkalson, D. 2009. Yield response of corn to deficit irrigation in a semiarid climate. Agricultural Water Management. 84:101–112.
Pelah, D., Wang, W., Altman, A., Shoseyov, O. and Bartels, D. 1997. Differential accumulation of water stress‐related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol plant journal. 99(1):153-159.
Pessarakli, M. 1999. Handbook of plant and crop stress. Marcel Dekker, Inc. 1188 pp.
Piri, H., Naserin, A. and Albalasmeh, A. 2022. Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber. Journal of Arid Land, 14(11):1274-1292.
Quilliam. R.S., Marsden. K. A., Gertler, C., Rousk, J., Deluca, T.H. and Jones, L.D. 2012. Agriculture, Ecosystems, Environment.192-199.
Rashki, P., Piri, H. and Khammari, E. 2022. Effect of potassium fertilization on roselle yield and yield components as well as IWUE under deficit irrigation regime. South African Journal of Botany, 148-1-12
Salek Mearaji, H., Tavakoli, A. and Sepahvand, N. A. 2020. Evaluating the effect of cytokinin foliar application on morphological traits and yield of quinoa (Chenopodium quinoa willd.) under optimal irrigation and drought stress conditions. Journal of Crop Ecophysiology. 14(4): 479-498.
Stone, S. L. and Gifford, D. J. 1997. Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early seedling growth: I. Storage protein reserves. International Journal of Plant Science. 158: 727–737.
Sun, H., Shi, W., Zhou, M., Ma, X. and Zhang, H. 2019. Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant, Soil and Environment. 65: 83-89. 
Sun, Y., Liu, F., Bendevis, M., Shabala, S. and Jacobsen, S. E. 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science. 200(1):12-23.
Telahigue, D. C., Yahia, L. B., Aljane, F., Belhouchett, K. and Toumi, L. 2017. Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. Journal of scientific agriculture, 1:222-232.
Uzoma, K., Inoue, M., Andry, H., Fujimaki H., Zahoor, A. and Nishihara, E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management. 27: 205-212.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zhemg, J. and Growley, D. 2010. Effect of biochar amendument on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, Chaina. Agriculture, Ecosystems & Environment. 139: 469- 475