Experimental Study of Pressure Distribution in Steady Flow inside Drainage Materials

Document Type : Original Article

Authors

1 Post Graduate Student of Hydraulic Structures, Department of Civil Engineering, University of Zanjan, Zanjan, Iran.

2 PhD Candidate of Hydraulic Structures, Department of Civil Engineering, University of Zanjan, Zanjan, Iran.

3 Associate Professor, Department of Civil Engineering, Zanjan University, Zanjan, Iran

Abstract

Pressure distribution is of utmost importance in both 1D and 2D analysis of steady flow in coarse-grained porous media. In the present study, the pressure distribution in length and height of the gravel media has been investigated in a experimental for three gradations of small, medium, and large in three lengths of 0.5, 1, and 1.5 meters. A piezometer is used to measure the pressure on the floor and walls of the laboratory flume. Experimental data show that; in the initial parts of the gravel media, the real pressure distribution (recorded in the laboratory) has relatively a good agreement with the hydrostatic pressure, and as the end of the gravel media is approached and the increase of water level curve, the pressure difference increases. The average Mean Relative Error (MRE) between the real pressure and the hydrostatic pressure for the two endpoints of the gravel media for the three gradations mentioned in the 0.5 meter media are respectively equal to 36.34%, 32.36%, and 33.64%, for 1 meter length is equal to 33.63%, 28.17%, and 29.34% respectively and for 1.5 meter length, it is equal to 39.46%, 25.66%, and 27.62% respectively. In other words, to check the steady flow in the coarse-grained porous media, the use of real pressure will increase the accuracy of the calculation process.

Keywords


شریعتی، ح.، خداشناس، س.، اسماعیلی، ک.، 1396. بررسی عوامل موثر بر آبگذری جریان از آبگیر کفی با محیط متخلخل در شرایط آب زلال. تحقیقات مهندسی سازه­های آبیاری و زهکشی، 69 (18): 17-30.
گودرزی، م.، بازرگان، ج، شعاعی، م.، 1399. تحلیل نیمرخ طولی سطح آب درون مصالح سنگریزه­ای با استفاده از تئوری جریان متغیر تدریجی با در نظر گرفتن نیروی درگ. مجله تحقیقات آب و خاک ایران. 51(2): 403-415.
Ahmed, N. and Sunada, D. K. 1969. Nonlinear flow in porous media. Journal of the Hydraulics Division. 95(6): 1847-1858.‏
Forchheimer, P. 1901. Wasserbewagung Drunch Boden, Z.Ver, Deutsh. Ing. 45: 1782-1788.
Hansen, D. Garga, V. K. and Townsend, D. R. 1995. Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Canadian Geotechnical Journal. 32(2): 223-232.‏
Kovács, G., 1980. Developments in water science: seepage hydraulics. Elsevier Scientific Publishing Company.‏
Leps, T. M. 1973. Flow through rockfill, Embankment-dam engineering casagrande volume edited by Hirschfeld, RC and Poulos, SJ.‏
McWhorter, D. B. Sunada, D. K. and Sunada, D. K. 1977. Ground-water hydrology and hydraulics. Water Resources Publication.‏ LLC. U.S.Library.
Norouzi, H., Bazargan, J., Azhang, F. and Nasiri, R. 2021. Experimental study of drag coefficient in non-darcy steady and unsteady flow conditions in rockfill. Stochastic Environmental Research and Risk Assessment. 1-20.‏
Norouzi, H., Hasani, M. H., Bazargan, J., & Shoaei, S. M. 2022. Estimating output flow depth from Rockfill Porous media. Water Supply. 22(2): 1796-1809.‏
Sedghi-Asl, M., Rahimi, H. 2011. Adoption of Manning's equation to 1D non-Darcy flow problems. Journal of Hydraulic Research. 49(6): 814-817.
Sidiropoulou, M. G. Moutsopoulos, K. N. Tsihrintzis, V. A. 2007. Determination of Forchheimer equation coefficients and b. Hydrological Processes: An International Journal. 21(4): 534-554.
Stephenson, D. J. 1979. Rockfill in hydraulic engineering. Elsevier scientific publishing compani.‏ Distributors for the United States and Canada.
Ward, J. C. 1964. Turbulent flow in porous media. Journal of the hydraulics division. 90(5): 1-12.‏