Prediction River Discharge Using the Combined Method of Long Short-Term Memory, Wavelet Transform and Empirical Mode Decomposition in Semi-Arid and Humid Climate

Document Type : Original Article

Authors

1 Professor, Department of Water Engineering, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran.

2 PhD Candidate of Water and Hydraulic Structures, Faculty of Civil Engineering, University of Tabriz

Abstract

Iran is faced with a dry and semi-dry climate with destructive floods, droughts, and water shortages. Droughts and floods can affect the environment, economic, and social activities. Therefore, examining and predicting river discharge and planning management to control it, especially for future water consumption, is very valuable. In this study, changes in river discharge were modeled using statistical data from 2001 to 2020.Statistical data from synoptic and hydrometric stations in a semi-arid region in Urmia city of West Azerbaijan province and a humid region in Amol city of Mazandaran province were used. Out of twelve time-series models defined for the Long Short-Term Memory (LSTM) network, the best model was identified. Then, LSTM modeling was performed based on pre-processing methods of Discrete Wavelet Transform (DWT) and Complementary Ensemble Empirical Mode Decomposition (CEEMD). The results showed that the selected model has high ability and efficiency in estimating the amount of river discharge. On the other hand, pre-processing methods improved the results such that the DC evaluation criterion in the wavelet transform increased from 0.93 to 0.95 in the Nazloo River and from 0.83 to 0.90 in the Chalous River. The best evaluation results for test data using wavelet transform for the Nazloo River in the semi-arid climate with evaluation criteria of R=0.977, DC=0.954, and RMSE=0.018 were obtained. Furthermore, the results of the sensitivity analysis indicated that the discharge parameter of one day before is the most effective in daily discharge estimation.

Keywords


آذری،م.، مرادی،ح.، ثقفیان،ب.، فرامرزی،م. 1392. ارزیابی اثرات هیدرولوژیکی تغییر اقلیم در حوضه آبخیز گرگان رود. نشریه آب‌وخاک علوم و صنایع کشاورزی ، 27(3): 547-537.
 بهمنش،ج.، آزاد ­طلا تپه،ن.، رضایی،ح.، خلیلی،ک. 1393. اثر تغییر اقلیم بر تبخیر تعرق مرجع،کمبود بارندگی و کمبود فشار بخار هوا در ارومیه. نشریه دانش آب‌وخاک ، 25(2): 91-79.
بابایی مقدم، ا.، خالدیان،م.، شاه نظری،ع.، و مرتضی پور،م. 1395. بررسی و پیش‌بینی دبی رودخانه‌های قزل‌اوزن و شاهرود. اکو هیدرولوژی، 3(2):195-204 .
ثاقبیان، س. م. 1399. پیش‌بینی زمانی و مکانی دبی جریان با استفاده از روش‌های تلفیقی هوش مصنوعی و پیش‌پردازش و پس پردازش سری زمانی. نشریه آبیاری و زهکشی ایران،14(4): 1137-1151 .
سیاری ،ن.، علیزاده،ا.،  بنایان اول، م.، فرید حسینی،ع.، حسامی‌ترمانی، م.ر. 1390 . مقایسه دو مدل گردش عمومی جو پیش‌بینی HadCM3,CGCM2 در پارامترهای اقلیمی و نیاز آبی گیاهان تحت تغییر اقلیم. نشریه آب‌وخاک علوم و صنایع کشاورزی، 25(4): 925-912.
لشنی‌زند,م.، پیامنی،ک.، احمدی،ش.، و ویس‌کرمی،ا. 1393. پهنه‌بندی بوم اقلیم‌شناسی ایران. مهندسی و مدیریت آبخیز، 6(2): 175-189 .
میرزا نیا،ا.، ملک احمدی،ح.، شاه‌محمدی،ی.، و ابراهیم‌زاده،ع. 1400. تأثیر موجک برافزایش دقت مدل‌های تخمینی در مدل‌سازی بارش-رواناب .مطالعۀ موردی: حوضۀ صوفی چای. مدل‌سازی و مدیریت آب‌وخاک ،1 (3): 67-.
Adamowski, K., Prokoph, A. and Adamowski, J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes: An International Journal. 23(18): 2686-2696.‏
Amirat, Y., Benbouzid, M. E. H., Wang, T., Bacha, K. and Feld, G. J. A. A. 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics. 133: 202-209.‏
Adarsh, S., VishnuPriya, M. S., Narayanan, S., Smruthi, M. S., George, P. and Benjie, N. M. 2016. Trend analysis of sediment flux time series from tropical river basins in India using non-parametric tests and multiscale decomposition. Modeling Earth Systems and Environment. 2(4): 1-16.‏
Alizadeh, M. J., Kavianpour, M. R., Kisi, O. and Nourani, V. 2017. A new approach for simulating and forecasting the rainfall-runoff process within the next two months. Journal of hydrology. 548: 588-597.‏
Adamowski, J. and Sun, K. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology. 390(1-2): 85-91.‏
Behzad, M., Asghari, K., Eazi, M. and Palhang, M. 2009. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with applications. 36(4): 7624-7629.‏
Choy, K. Y. and Chan, C. W. 2003. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science, 34(14-15), 763-773.‏
Chou, C. M. 2014. Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales. Stochastic Environmental Research and Risk Assessment. 28(6): 1401-1408.‏
Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv preprint arXiv: 1412.3555.‏
Danandeh Mehr, A. D., Nourani, V., Hrnjica, B. and Molajou, A. 2017. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events. Journal of Hydrology. 555: 397-406.‏
Danandeh Mehr, A. D., Kahya, E., & Olyaie, E. 2013. Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology. 505: 240-249.‏
Deng, L. and Yu, D. 2014. Deep learning: methods and applications. Foundations and trends® in signal processing. 7(3–4): 197-387.‏
Felix, A. G., Jürgen, S. and Fred, C. 2000. Learning to forget: Continual prediction with LSTM. Neural computation. 12(10): 2451-2471.‏
Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H. and Schmidhuber, J. 2008. A novel connectionist system for unconstrained handwriting recognition. IEEE transactions on pattern analysis and machine intelligence. 31(5): 855-868.‏
Graves, A. and Schmidhuber, J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks. 18(5-6): 602-610.
Gers F, Schmidhuber J, Cummins F. Learning to Forget: Continual Prediction with LSTM. Neural computation. 2000; 12:2451-71.
Huang, Y., Schmitt, F. G., Lu, Z. and Liu, Y. 2009. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Journal of Hydrology. 373(1-2): 103-111.‏
Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural computation. 9(8): 1735-1780.‏
Kisi, Ö. and Çobaner, M. 2009. Modeling river stage‐discharge relationships using different neural network computing techniques. CLEAN–Soil, Air, Water. 37(2: 160-169.‏
Kisi, O. and Shiri, J. 2011. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water resources management. 25(13): 3135-3152.‏
Kisi, O. and Cimen, M. 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology. 399(1-2): 132-140.
Lau, K. M. and Weng, H. 1995. Climate signal detection using wavelet transform: How to make a time series sing. Bulletin of the American meteorological society. 76(12): 2391-2402.
Lima, A. R., Cannon, A. J. and Hsieh, W. W. 2016. Forecasting daily streamflow using online sequential extreme learning machines. Journal of hydrology. 537: 431-443.‏
Roushangar, K., Chamani, M., Ghasempour, R., Azamathulla, H. M. and Alizadeh, F. 2021. A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations. Water Supply. 21(6): 3080-3098.‏
Roushangar, K. and Shahnazi, S. 2019. Evaluating the Performance of Data-Driven Methods for Prediction of Total Sediment Load in Gravel-Bed Rivers. Iranian Journal of Soil and Water Research. 50(6): 1467-1477.
Roushangar, K. and Ghasempour, R. 2020. Monthly precipitation prediction improving using the integrated model based on kernel-wavelet and complementary ensemble empirical mode decomposition. Amirkabir Journal of Civil Engineering. 52(10): 2649-2660.‏
Sak, H., Senior, A. W. and Beaufays, F. 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling.‏
Taormina, R. and Chau, K. W. 2015. Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. Journal of hydrology. 529: 1617-1632.‏
Wu, Z. and Huang, N. E. 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 460(2046: 1597-1611.‏
Yadav, B. and Eliza, K. 2017. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement. 103: 294-301.‏
Yaseen, Z. M., Jaafar, O., Deo, R. C., Kisi, O., Adamowski, J., Quilty, J. and El-Shafie, A. 2016. Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. Journal of Hydrology. 542: 603-614.‏
Zhu, S., Luo, X., Xu, Z. and Ye, L. 2019. Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable selection.  Hydrology Research. 50(1): 200-214.‏