Determination of Quinoa (Chenopodium quinoa Willd.) crop coefficient and water requirement in lysimetric condition

Document Type : Original Article

Authors

1 Assistant Prof., National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 National Salinity Research Center

3 Member of National Salinity Research Center of Yazd. Yazd. Iran

Abstract

The water and soil resources are limited, and the optimal use of water resources in the agriculture needs the most accurate determination of the amount of crop water requirement and crop coefficients in different stages of growth. Quinoa (Chenopodium quinoa Willd.) is one of the plants that has outstanding economic and agronomic characteristics in the production of oil and protein among the sorghums. The present research was conducted to determine the maximum allowable depletion, crop coefficient and water requirement of quinoa under controlled conditions (lysimeter) in two spring and autumn cropping season. The results showed that with a decrease in the moisture level at the beginning of irrigation from 0.4 to 0.2 total available water, the amount of biomass and seed yield had a significant decrease of 24 and 37% in spring cropping and 34 and 47% in autumn cropping, respectively. But the decrease in moisture levels from 0.8 to 0.6 and 0.6 to 0.4 did not cause a significant decrease in seed yield and biomass in both spring and winter cropping. Based on the results, Maximum Allowable Depletion (MAD) was estimated to be 0.6 in both cropping seasons. Overall, the crop coefficient of quinoa (Titicaca variety) in spring cropping was equal to be 0.42 at the beginning of the growing season, 0.95 in the middle of the growing season, and 0.33 at the end of the growing season. In the autumn cropping, the crop coefficient of quinoa was equal to be 0.36 at the beginning of the growing season, 1.09 in the middle of the season, and 0.56 at the end of the growing season.The net water requirement of different treatments varied between 618.1 to 295.5 mm in spring cropping season and between 597.8 to 334.8 mm in autumn cropping season.

Keywords


بیرامی، ح.، رحیمیان، م.ح.، صالحی، م. و یزدانی بیوکی، ر. 1398. تأثیر سطوح مختلف شوری آب آبیاری بر عملکرد و اجزاء عملکرد کینوا (Chenopodium quinoa) در کشت بهاره. تولید گیاهان زراعی. 2(4): 111-120.
بیرامی، ح.، رحیمیان، م.ح. و دهقانی، ف. 1399. برآورد نیاز آبی و ضریب گیاهی دو گونه سالیکورنیا در یزد. پژوهش آب در کشاورزی (علوم خاک و آب)، 34(3): 401-414.
بیرامی، ح.، رحیمیان، م.ح.، صالحی، م.، یزدانی بیوکی، ر.، شیران تفتی، م. و نیکخواه، م. 1399. تاثیر دور آبیاری بر عملکرد و اجزای عملکرد کینوا (Chenopodium quinoa)  در شرایط شور. دانش کشاورزی و تولید پایدار (دانش کشاورزی). 30(3 ): 347-357.
تافته، آ.،و  امداد، م.‌ر. 1400. تعیین ضرایب حساسیت عملکرد محصول نسبت به آب (Ky) در مدیریت‌های کم‌آبیاری در مراحل مختلف رشد گیاه کینوا. مدیریت آب در کشاورزی 8(2): 101-116.
جمالی، ص. و انصاری، ح. 1398. اثر کیفیت آب و مدیریت آبیاری روی رشد و عملکرد گیاه کینوا. پژوهش آب در کشاورزی. 33(3): 339-352.
جمالی، ص.، شریفان، ح.، هزار جریبی، ا. و سپهوند، ن.ع. 1395. بررسی تأثیر سطوح مختلف شوری بر جوانه زنی و شاخص‌های رشد دو رقم گیاه کینوا. نشریه حفاظت منابع آب و خاک.6(1): 87-98.  
گلستانی فر، ف.، خاشعی سیوکی، ع.، و محمودی، س. 1401. تعیین ضریب گیاهی و نیاز آبی گیاه کینوا به روش لایسیمتری در دشت بیرجند. پژوهش آب در کشاورزی. 36(4): 405-420.
مسکینی ویشکایی، ف.، تافته، آ.، گوشه، م. 1402. تعیین نیاز آبی کینوا و ضرایب پاسخ به تنش کم‌آبی در مراحل مختلف رشد گیاه در اقلیم خوزستان. علوم آب و خاک. 27(1): 275-286.
مصطفائی، م.، جامی الاحمدی، م. صالحی، م. و  شهیدی، ع. 1402. بررسی خصوصیات فیزیولوژیکی و عملکردی گیاه کینوا تحت تأثیر سطوح مختلف آبیاری و تراکم بوته. پژوهشهای زراعی ایران. 21(1): 29-46.
رحیمی خوب، ح.، سهرابی، ت. و دلشاد، م. 1398. تعیین نیاز آبی و ضریب گیاهی ریحان در شرایط کشت کنترل شده گلخانه. تحقیقات آب و خاک ایران. 50(10): 2465-2472.
Adolf V.I., Jacobsen S.E. and Shabala S. 2012. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany. 92: 43–54.
Algosaibi A.M., Badran, A.E., Almadini, A.M. and El-Garawany M.M. 2017. The Effect of irrigation intervals on the growth and yield of quinoa crop and its components. Journal of Agricultural Science. 9(9): 182-191.
Allen R.G., Pereira L.S., Raes D. and Smith M. 1998.Crop evapotranspiration: guidelines for computing crop requirements, FAO Irrigation and Drainage Paper No. 56. FAO, Rome.
Bhargava A., Shukla S., Rajan S. and Ohri D. 2007 Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genetic Resources and Crop Evolution. 54:167-173.
Bozkurt Çolak, Y., Yazar, A., Alghory, A. and Tekin, S. 2021. Yield and water productivity response of quinoa to various deficit irrigation regimes applied with surface and subsurface drip systems. The Journal of Agricultural Science, 159(1-2): 116-127.
Doorenbos, J. and Pruitt, W.O. 1986. Crop water requirements. FAO Irrigation and Drainage Paper No. 24. Rome, Italy.
Garcia, M., Raes, D. and Jacobsen, S.E. 2003. Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management. 60: 119–134.
Go´mez-Pando, L. R., lvarez-Castro, R. and Eguiluz-de Ia Barra, A. 2010. Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd. a promising crop. Journal of Agronomy and Crop Science. 196: 391–396.
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., and Shabala, S. (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany. 62(1): 185-193.
Jacobsen S.E., Quispe, H. and Mujica, A. 2001. Quinoa: an alternative crop for saline soilsin the Andes. In: Scientists and Farmer-Partners in Research for the 21st Century. CIP Program Report 1999–2000, 403–408.
Jacobsen, S.E., Monteros, C., Corcuera, L.J., Bravo, L.A., Christiansen, J.L. and Mujica, A. 2007. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy. 26: 471–475.
Jensen, C.R., S.E. Jacobsen, M.N. Andersen, N. Nuñez, S.D. Andersen, L. Rasmussen. and Mogensen, V.O. 2000. Leaf gas exchange and water relation characteristics of fi eld quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy. 13: 11–25. 
Laaboudi, A., Allaoua, C., Hafouda, L., Ballague, D., Sbargoud, S., Meterfi, J. and Herda, F. 2015.  Crop coefficient and water requirement for wheat (Triticum aestivum) in different climate regimes of Algeria. International Journal of Agricultural Policy and Research. 3 (8): 328-336.
McDonald, A. J. S., and Davis, W. J. 1996. Keeping in touch: Responses of the whole plant to deficits in water and nitrogen supply. Advances in Botanical Research. 22: 229-300.
Sezen, S. M., Yazar, A., Tekin, S. and Yildiz, M. 2016. Use of dranage water for irrigation of quinoa in a mediterranean environment. 2nd World Irrigation Forum (WIF2) 6-8 November 2016, Chiang Mai, Thailand.
Tyagi, N.K., Sharma, D.K. and Lutra, S.K. 2000. Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agricultural Water Management. 45(1): 41–54.
Yazar, A., Incekaya, C., Sezen, S.M. and Jacobsen, S.E. 2015. Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop Pasture Science. 66(10): 993-1002