Experimental Investigation of Effective Factors on the Velocity Index for Calculating Discharge in Open Channels

Document Type : Original Article

Authors

1 Department of Water Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources,, Gorgan, Iran.

2 Department of Water Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Ph.D. Graduated of Water Structures, Tehran University, Tehran, Iran.

4 Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources., Gorgan., Iran

Abstract

Due to the measurement problems related to direct methods for estimating discharge, indirect methods based on the concept of surface velocity have been recently developed. In the present research according to the limited number of studies and the lack of appropriate relations between river geometric and hydraulic parameters with velocity index, the effect of dimensionless parameters including dimensionless Manning roughness coefficient, relative depth, Froud number and bed slope on the velocity index has been experimentally investigated. The results showed that by increasing the parameters of relative depth, dimensionless Manning roughness coefficient and Froude number the velocity index decreases. Meanwhile the influence of the bed slope is not clear. The mean value of the velocity index in rectangular channels was 0.92 and the its average error was estimated to be about 4.9%. Also, the analysis of the analytical models of the vertical velocity distribution showed that in the case of a smooth bed, the power law model with 4.5% average error and in the case of the bed with metal mesh, the logarithmic law with 10% average error have the best estimate of the velocity index.

Keywords


رحیمی، ا. و رحیم­پور، م. 1393. اصلاح ضریب سرعت سطحی در روش جسم شناور با مدل‌سازی جریان در نرم‌افزار فلوئنت. نشریه آبیاری و زهکشی ایران. 8(4):809-800.
Akter, T., Quevauviller, P., Eisenreich, S. J. and Vaes, G. 2018. Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environmental science and policy. 89:163-175.‏
Al Sawaf, M. B., Kawanisi, K. and Xiao, C. 2020. Measuring Low Flowrates of a Shallow Mountainous River within Restricted Site Conditions and the Characteristics of Acoustic Arrival Times within Low Flows. Water Resources Management. 34(10):3059-3078.‏
Bahmanpouri, F., Barbetta, S., Gualtieri, C., Ianniruberto, M., Filizola, N., Termini, D., and Moramarco, T. 2022. Prediction of river discharges at confluences based on Entropy theory and surface-velocity measurements. Journal of Hydrology, 606, 127404.‏
Biggs, H., Smart, G., Holwerda, N., Doyle, M., McDonald, M. and Ede, M. 2021. River discharge from surface velocity measurements - A field guide for selecting alpha. Envirolink Advice Report. Christchurch, New Zealand.
Chanson, H. 2004. The hydraulics of open channel flow: An introduction. Elsevier, Second Edition, Oxford; Burlington, MA: Elsevier Butterworth-Heinemann. Xlvii. 585, [16] of plates. p: 634.
Chen, Y. C., Hsu, Y. C. and Zai, E. O. 2022. Streamflow Measurement Using Mean Surface Velocity. Water. 14(15):2370.‏
Cipolla, S. S., Nones, M. and Maglionico, M. 2018. Estimation of flow discharge using water surface velocity in reclamation canals: a case study, In Proc. of the 5th IAHR Europe Congress - New Challenges in Hydraulic Research and Engineering, Editor(s) Aronne Armanini and Elena Nucci. (pp. 623-624).‏
Convertino, M., Annis, A., and Nardi, F. 2019. Information-theoretic portfolio decision model for optimal flood management. Environmental Modelling and Software. 119:258-274.‏
Fujita, I. 2018. Principles of surface velocity gaugings. The 4th IAHR-WMO-IAHS Training Course on Stream Gauging, 2.
Fulton, J. W., Mason, Ch. A., Eggleston, J. R., Nicotra, M. J., Chiu, Ch., Henneberg, M. F., Best, H. R., Cederberg, J. R., Holnbeck, S. R., Lotspeich, R. R., Laveau, Ch. D., Moramarco, T., Jones M. E., Gourley, J. J. and Wasielewski, D. 2020. Near-Field Remote Sensing of Surface Velocity and River Discharge Using Radars and the Probability Concept at 10 U.S. Geological Survey Streamgages. Remote Sensing. 12(8), 1296.
Geay, T., Zanker, S., Hauet, A., Misset, C. and Recking, A. 2018. An estimate of bedload discharge in rivers with passive acoustic measurements: Towards a generalized calibration curve? In Proceedings of the 9th International Conference on Fluvial Hydraulics (River Flow), Lyon, France, 5–8 September.
Genç, O., Ardıçlıoglu, M. and Agıralioglu, N. 2015. Calculation of mean velocity and discharge using water surface velocity in small streams. Journal of Flow Measurement and Instrumentation. 41:115–120.
Gunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran, P., Knight, D. K., Chandler, J. H., Tang, X., and Fujita, I. 2012. The application of LS-PIV to a small irregular river for inbank and overbank flows. Journal of Flow Measurement and Instrumentation. 24:1-12.
Hauet, A., Morlot, Th. and Daubagnan, L. 2018. Velocity profile and depth-averaged to surface velocity in natural streams: A review over a large sample of rivers. In E3s web of conferences (Vol. 40, p. 06015). EDP Sciences.‏
Heritage, G., Entwistle, N., Milan, D., and Tooth, S. 2019. Quantifying and contextualising cyclone-driven, extreme flood magnitudes in bedrock-influenced dryland rivers. Advances in Water Resources. 123:145-159.‏
Huang, K. L., Chen, H., Xiang, T. Y., Lin, Y. F., Liu, B. Y., Wang, J., Liu, D. D. and Xu, C. Y. 2022. A photogrammetry-based variational optimization method for river surface velocity measurement. Journal of Hydrology. 605, 127240.
Jodeau, M., Hauet, A., Paquier, A., Le Coz, J. and Dramais, G. 2008. Application and evaluation of LSPIV technique for the monitoring of river surface velocities in high flow conditions. Journal of Flow Measurement and Instrumentation. 19(2):117–127.
Khan, M. R., Gourley, J. J., Duarte, J. A., Vergara, H., Wasielewski, D., Ayral, P. A., and Fulton, J. W. 2021. Uncertainty in remote sensing of streams using noncontact radars. Journal of Hydrology. 603, 126809.
Lee, D., Ward, P. and Block, P. 2018. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally. Water Resources Research. 54(2):916–938.
Levesque, V. A., and Oberg, K. A. 2012. Computing discharge using the index velocity method (pp. 3-A23). US Department of the Interior, US Geological Survey.‏
Li, Z., Li, Q., Wang, J., Feng, Y. and Shao, Q. 2020. Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs. Science of the total Environment. 716, 137072.
Liu, B., Wang, Y., Xia, J., Quan, J. and Wang, J. 2021. Optimal water resources operation for rivers-connected lake under uncertainty. Journal of Hydrology. 595, 125863.
Moramarco, T., Barbetta, S. and Tarpanelli, A. 2017. From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory. Journal of water. 9(2):1-12
Muste, M., Fujita, I., and Hauet, A. 2008. Large-scale particle image velocimetry for measurements in riverine environments. Journal of Water Resources Research. 44(4):1–14.
Nelson, J. M., Kinzel, P. J., Legleiter, C. J., McDonald, R. R., Overstreet, B. and Conaway, J. S. 2017. Using remotely sensed data to estimate river characteristics including water-surface velocity and discharge. 37th IAHR World Congress, Kuala Lumpur, Malaysia. (pp. 1-10).‏
Osorio-Cano, J. D., Osorio, A. F. and Medina, R. 2013. A method for extracting surface flow velocities and discharge volumes from video images in laboratory. Journal of Flow Measurement and Instrumentation. 33:188–196.
Polatel, C. 2006. Large-scale roughness effect on free-surface and bulk flow characteristics in open-channel flows. Ph.D. Thesis. Iowa Institute of Hydraulic Research. The University of Iowa, Ames, Iowa.
Randall, M. 2021 National Industry Guidelines for hydrometric monitoring – Part 11: Application of surface velocity methods for velocity and open channel discharge measurements. Bureau of Meteorology. Melbourne, Australia.
Rantz, S. E. 1982. Measurement and computation of streamflow-Volume 2. Computation of discharge: U.S. Geological Survey Water-Supply Paper 2175. 284 p.
Tauro, F., Selker, J., van de Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri, M., et al. 2018. Measurements and Observations in the XXI century (MOXXI): Innovation and multi‐disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal. 63(2):169–196.
USBR (United States Bureau of Reclamation). 1997. Water measurement manual. Water Resources Publications. LLC, Highlands Ranch. CO.
Weitbrecht, V., Kühn, G. and Jirka, G. H. 2002. Large scale PIV-measurements at the surface of shallow water flows. Journal of Flow Measurement and Instrumentation. 13(5-6): 237–245.
Welber, M., Le Coz, J., Laronne, J. B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A. and Salvaro, M. 2016. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR). Journal of Water Resources Research. 52(2):1108–1126.
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M. and Sharma, S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment. 1(8): 388-403.‏
Xia, C., Liu, G., Zhou, J., Meng, Y., Chen, K., Gu, P., Yang, M., Huang, X. and Mei, J. 2021. Revealing the impact of water conservancy projects and urbanization on hydrological cycle based on the distribution of hydrogen and oxygen isotopes in water. Environmental Science and Pollution Research. 28:40160–40177.
Yang, Y., Wen, B., Wang, C. and Hou, Y. 2019. Real-time and automatic river discharge measurement with UHF radar. IEEE Geoscience and Remote Sensing Letters. 17(11):1851-1855.‏
Zhang, J., Guo, L., Huang, T., Zhang, D., Deng, Z., Liu, L. and Yan, T. 2021. Hydro-environmental response to the inter-basin water resource development in the middle and lower Han River, China. Hydrology Research. 53(1): 141-155.‏
Zhao, H. Y., Chen, H., Liu, B. Y., Liu, W. G., Xu, C. Y., Guo, S. L. and Wang, J. 2021. An improvement of the Space-Time Image Velocimetry combined with a new denoising method for estimating river discharge. Flow Measurement and Instrumentation. 77: 101864