Application of Multi Objective Optimization Method AMALGAM in Determining the Policy of Optimum Discharge from Groundwater Resources Using Mathematical Model

Document Type : Original Article

Authors

1 M.Sc. Student, Water Resources Engineering, University of Birjand., Birjan., Iran

2 Assistant Professor of Water Engineering Department., University of Birjand., Birjand., Iran

3 Associate Professor of Civil Engineering, University of Birjand., Birjan., Iran

4 Assistant Professor of Water Resources Engineering Department., University of South Carolina

Abstract

Due to existence of drought periods, decreasing the discharge of the aqueducts and springs and also growing usage of water in study area, administrative sections are eager to do pumping from the groundwater aquifer so aquifer operation management can have an important role in preventing the adverse decrease in water table in this aquifer and creating the Irreparable disaster for attaining this necessity simulator-optimizer model of groundwater was offered. Offered model is a combination of aquifer simulating model (MODFLOW2005-NWT) and multi-objective optimizing algorithm (AMALGAM) in MATLAB programming. For determining the aquifer hydrodynamics parameters, this model was validated and calibrated. The objectives of this model were minimizing the three functions of shortage affected by the failure to supply the necessity, decreasing the water table and Modified Shortage Index (MSI). The presented model was run for a year period with 12 monthly Stress period and Optimal Pareto Front was determined. As one of pareto optimum calculated answers, it can be viewed that when water table remains unchanged, 14.4 million cubic meters of demands exhibit shortage and the amount of MSI will be 3.95. In order to specifying the best option of policy discharge, according to economic, social criteria and environmental effects by administrators and relevant policies,  the appropriate optimum answer should been defined  among the other optimum and selected pareto answers and also among the discharge amounts corresponding chosen answer. By analyzing the results of using the recommended structure, it can be found that the presented approach has good performance in determining the aquifer optimum policy

Keywords


علی محمدی،س. 1384. طراحی و بهره­برداری بهینه تلفیقی از سیستم آب­های سطحی و زیرزمینی- رویکرد ذخیره سیکلی، پایان­نامه دکتری، دانشکده عمران، دانشگاه علم و صنعت ایران، 220 ص.
جنت رستمی،س.، خلقی،م.، محمدی،ک.، مالمیر،م. 1390. مدیریت بهره­برداری از سفره آب زیرزمینی دشت شهرکرد، ششمین کنگره ملی مهندسی عمران، سمنان
شمسایی،ا. 1377. هیدرولیک جریان آب در محیط­های متخلخل. جلد سوم کاربرد مدل­های ریاضی- کامپیوتری. دانشگاه صنعتی امیر کبیر، 392 ص.
Abdeh-Kolahchi,A., Satish,M.G., Ketata,C and Islam,M.R. 2006. Sensitivity analysis of genetic algorithm parameters in groundwater monitoring network optimization for petroleum contaminant detection. Journal. Risk Assess. Management. In press .
Ahlfeld,D.P., Barlow,P.M and Mulligan,A.E. 2005. GWM—A ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000). U.S. Geological Survey Open-File Report.1072, 124
Ahlfeld,D.P and Sawyer,C.S. 1990. Well Location in Capture Zone Design Using Simulation and Optimization Techniques. Groundwater. 28 .4: 507-512.
Aquado,E and Remson,I. 1974. Groundwater hydraulics in aquifer management. Journal of the Hydraulics Division – ASCE, 100.1: 103–118.
Barlow,P.M., Ahlfeld,D.P and Dickerman,D.C. 2003. Conjunctive-Management Models for Sustained Yield of Stream-Aquifer Systems. Journal of. Water Resources Planing and Management, 129.1: 35-48.
Bekele,E.G and Nicklow,J.W. 2007. Multi-objective automatic calibration of SWAT using NSGA-II, Journal of Hydrology. 341(3-4), 165-176.
Carrera,J., Medina,A., Heredia,J., Vives,L., Ward,J and Walters,G. 1989. Parameter stimation in groundwater modelling: From theory to application. Hydrogeo Chem, Inc., Tucson, Arizona, USA.
Anderson,M.P and Woessner,W.W. 1992. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press. 381.
Chiang,W and Kinzelbach,W. 2001. Processing Modflow A Simulation System for Modeling Groundwater Flow and Pollution. Berlin, Springer Verlag.
Dupuit,J. 1863. Estudes Theoriques et Pratiques sur le Mouvement desEaux. Paris: Dunod.
Emadi,A.R and Khademi,M. 2011. Reservoir Operation Rule Curve of Doroodzan Dam using Yield Model” Journal of Water and Soil. 25.5: 1058-1068
Hsu,N.S and Cheng,K.W. 2002. Network flow optimization model for basin-scale water supply planning. Water Resources Planning and Management. 128.2:102–112
Olsthoorn,TN. 2013. mfLab: Environmet for MODFLOW suite groundwater modeling. accessed December 19
Oliveira,R and Loucks,D. 1997. Operating rules for multi - reservoir systems. Water Resource Research. 33.4: 839–852.
Prickett,T.A. 1975. Modeling Techniques for Groundwater Evaluation. Journal of Advances in Hydrosciense, 10.1: 1-143.
Schoups,G., Addams,C.L and Gorelick,S.M. 2005. Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrology and Earth System Sciences. 9.5: 549-568.
Tabari,MMR and Soltani,J. 2013. Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models Water resources management. 27 .1: 37-53
Tu,M.Y., Hsu,N.S., Tsai,F.T.C and Yeh,W.W.G. 2008. Optimization of hedging rules for reservoir operations. Water Resource Planning and Management. 134.1: 3–13
Vrugt,J.A and Robinson,B.A. 2007. Improved evolutionary optimization from genetically adaptive multimethod search. Proceding. National. Acadamic. Science. U.S.A. 1043, 708–711
Zhang,X., Srinivasan,R and Liew,M.V. 2010. On the use of multi‐algorithm, genetically adaptive multi‐objective method for multi‐site calibration of the SWAT model. Hydrological Processes24.8: 955-969.
Zheng,C and Bennett,G.D. 2002. Applied contaminant transport modeling. (Vol. 2). New York: Wiley-Interscience.