Design, construction and evaluation of an online control system for drop irrigation in greenhouse

Document Type : Original Article

Authors

1 Department of Biosystem Mechanical Engineering, Agricultural Sciences and Natural Resources University, Sari, Iran

2 Department of Biosystem Mechanical Engineering, Agricultural Sciences and Natural Resources University, Sari, Iran.

Abstract

At the moment, the importance of managing the proper use of water resources due to climate change, rainfall reduction, population growth and water consumption is considered. In this regard, the design, construction, and evaluation of an easy-to-use tool for cucumber irrigation on a smartphone was designed to enhance irrigation efficiency. In this research, the design and construction of an online drop irrigation control system was performed based on obtaining information about the greenhouse cucumber product such as moisture content, ambient temperature and soil by sensors. The most important components of this system include microcontroller, wireless sensor stations, control and information processing station, wireless sensor, humidity meter, temperature sensor and ambient humidity sensor, solenoid valve and water meter. The programming language used for the microcontroller was BASIC, and for the design of electronic circuits, the PROTEUS software was used. Statistical analyzes were performed using SPSS software. There was a significant difference between product yield and mean water consumption at 5% and 1% for both online and manual control methods, respectively. In online irrigation control system, the lifetime of greenhouse cucumber plant was 18 days longer than manual irrigation system. The results of cucumber production in online drop irrigation system were 101.23 t/ha more than manual drop irrigation system. In this system, the management of time and space and the cost of irrigation (removal of workers for irrigation) is not comparable to manual method. Therefore, the use of an online control system can be a reliable alternative to manual irrigation and the efficiency of this system is more favorable.

Keywords


اسدی،ف.، جهان‌بین،الف و موسوی صدر،م.الف. ۱۳۹۳. طراحی سیستم تشخیص آبیاری کنترل برخط جهت بهینه‌سازی مصرف آب در کشاورزی با به‌کارگیری شبکه حسگر بی‌سیم مبتنی بر منطق فازی، دومین کنفرانس بین‌المللی دستاوردهای نوین در علوم مهندسی و پایه، به‌صورت الکترونیکی، مرکز علمی کاوشگر علم.
افشانی،س.ع.ر. 1393. آموزش کاربردی SPSS در علوم اجتماعی و رفتاری، چاپ سوم، انتشارات دانشگاه یزد.
جعفرنیا،س و  همایی،م. 1385. راهنمای جامع و مصور کشت گلخانه‌ای: خیار و گوجه‌فرنگی. انتشارات سخن‌گستر، 400.
رابط،ع.۱۳۹۴.ضرورت مدیریت بهره‌برداری بهینه از منابع آب در بخش کشاورزی، چهارمین همایش ملی توسعه پایدار در مناطق خشک و نیمه‌خشک، ابرکوه، معاونت پژوهشی دانشگاه آزاد اسلامی واحد ابرکوه.
صدر قاین،س.ح.، رافضی،ز.، رفعتی،م و شهریاری،د. 1381. ارزیابی اقتصادی سیستم آبیاری میکرو و بررسی کاربرد این سیستم‌ها در مقایسه با آبیاری سطحی در زراعت خیار. گزارش نهایی طرح تحقیقاتی. شماره 37/81. سازمان تحقیقات و آموزش کشاورزی.
علیزاده،الف. 1387. رابطه آب‌، خاک و گیاه. انتشارت دانشگاه امام رضا (ع). 484.
نداف­زاده،م.، آبدانان مهدی­زاده،س.، آسودار،م.الف.، صالی سلمی،م.ر. 1396. طراحی و توسعه سامانه کنترل هوشمند تعیین آب موردنیاز گیاهان گلخانه‌ای با کمک بینای ماشین (مورد مطالعه: گیاه حسن‌یوسف)، نشریه، مجله مهندسی بیوسیستم ایران، 48، شماره 2، 297_285.
Atta,R., Boutraa,T and Akhkha,A. 2011. Smart irrigation system for wheat in Saudi Arabia using wireless sensors network technology. International Journal of Water Resources and Arid Environments. 1.6:478-82.
Balendonek,J., Hemming,J., Van Tuijl,B.A.J., Incrocci,L., Pardossi,A and Marzialetti,P. 2008. Sensors and wireless sensor networks for irrigation management under deficit conditions (Flow-aid). International conference on agricultural engineering . 23-25 June, Greece.
Berger,B., Parent,B., Tester,M. 2010. High throughput shoot imaging to study drought responses. Journal of Experimental Botany.61.13: 3519–3528.
Boutraa,T., Akhka,A., Alshoaibi,A and Atta,R. 2011. Evalation of the effectiveness of an automated irrigation system using wheat crops. Agriculture and biology jornal of North America. 2: 80-88.
Bouyoucos,G.J, 1964. Hydrometer method improved for making particle size analyses of soils. American society of agronomy. 54: 464_465.
Coolong,T 2013. Using irrigation to manage weeds: A focus on drip irrigation weed and pest control- Conventional and new challenges- Chapter 7.
Damas,M., Prados,A.M., Gomez,F., Olivares,G. 2001. Hidro bus system: field bus for integrated management of extensive areas of irrigated land. Microprocessors and microsystems. 25.3: 177-184.
Diallo,D and Marico,A. 2013. Fild copacity (FC) and permanent wilty point (pwp) of clay soils developed on Quaternary alluvium in Niger River loop (Mali) lnternational joumal of engineenrig research and applications. 3.1: 10805-1089.
Giah Bazr Iranian, 2017. http://www.gbi.co.ir
Kim, Y., Evans, R.G. and Iversen, W.M., 2009. Evaluation of closed-loop site-specific irrigation with wireless sensor network. Journal of Irrigation and Drainage Engineering. 135.1: 25-31.
Kirda,C., M. Cetin,M., Dasgan,Y., Topcu,S., Kaman,H., Ekici,B., Derici,M.R., and Ozguven,A.I. 2004. Yield Response of Greenhouse Grown Tomato to Partial Root Drying and Conventional Deficit Irrigation. Agricultural Water Management. 69:191 - 201.
Sezen,S.M., Celikel,G., Yazar,A., Tekin,S and Kapur,B. 2010. Effect of characteristics of trickle irrigation. Soil technology. 4.2: 125-134.
Shock,C.C., Feibert,B.G and Saunder,L.D. 1996. Automation of sudsurface drip irrigation for onion production. Malheur experiment station.
Taleyl,S.M., Patode,R.S., Mankar,A.N. 2002. Automation in drip irrigation system for cotton growing on large scale-A case study. Published by U.S. Committee on Irrigation and Drainage. 561-570
Winter,C., Soylemez,N., Trivedi,J., Pinkens,N., Craig,C and Vaidyanathan,V.2006. Design of a sensor based smart sprinkler system. Proceedings of the international journal management engineering- intertech conference, kean University, New Jersey, New Jersey, October 19-21.
Zotarelli,L., Michael.D.K., Morgan,T. 2010. Interpretaion of soil moisture content to determine soil field capacity and avoid over-irrigating sandy soils using soil moisture sensors, Institute of food and agricultural sciences, AE460.1-4.