Assessment of SWAP model in estimating the salinity and soil moisture content (Case study: Birjand)

Document Type : Original Article

Authors

1 Department of water sciences and engineering, Factuly of agriculture and natural resources, Arak university

2 Water engineering Dept. Faculty of Agriculture University of Birjand Birjand Iran

Abstract

This study wasconducted to evaluate of the agro-hydrological model SWAP3.03 forsimulating soil moisture content and salinity undercultivation of Wheatvarieties in terms of different qualities andquantities of Irrigation waterduring 2005-2006 growing season in the Research Field of University Birjand.Irrigation water was supplied from three local wells with different qualities namely 1.4, 4.5 and 9.6 ds/m.The model was initially calibrated with respect to the soil layers hydraulic and solute transportation parametersbased on a studyconducted in the research field. The results of this study showed that the seasonal average of soil moisture content and salinity distributionwas more uniformin full irrigation and excess (125% ET) treatmentsin comparison to othertreatments.Maximum nonuniformityin soil moisturecontent and salinity was observed under water and salinity stress treatments. Deficit irrigation and saline treatments reduced the accuracy of model predictions in estimating of soilmoisture content and salinity for various growing stages. Best model predictions were related to full irrigation (R2 = 0.95 for salinity class S1, R2 = 0.94 for salinity class S2,R2 = 0.93 for salinity class S3 in estimating the soil moisture content and R2 = 0.77 for salinity class S1, R2 = 0.82 for salinity class S2,R2 = 0.91 for salinity class S3 in estimating the salinity)and 75%ET treatments(R2 = 0.85 for salinity class S1, R2 = 0.82 for salinity class S2,R2 = 0.78 for salinity class S3 in estimating the soil moisture content and R2 = 0.7 for salinity class S1, R2 = 0.73 for salinity class S2,R2 = 0.87 for salinity class S3 in estimating the salinity). The trend of changes in accuracy of the model to estimating the soil moisture content and salinity was decreased towards deeper layers (R2=0.89-0.72 for soil moisture content and R2=0.87-0.71 for salinity). Despite of soil moisture content and salinity in upper layers of soil,high correlation coefficients (R2= 0.89 and0.87, for soil moisture contentandsalinity,respectively)indicated that SWAP is a dependable model for simulation of soil moisture content andsalinity.

Keywords


ابطحی،ع. 1380. واکنش نهال دو رقم پسته نسبت به مقدار و نوع شوری خاک در شرایط گلخانه. مجله علوم و فنون کشاورزی و منابع طبیعی. 5. 2­: 93-101.
خاکساری،و.، موسوی،س.ع.ا.، چراغی،س.ع.م.، کامکار حقیقی،ع.ا.، شاهرخ زند پارسا،.ش. 1385. ارزیابی مدل­های رایانه­ای SWAP و LEACHC در آب­شویی املاح مزرعه­ای املاح خاک در منطقه چاه افضل استان یزد. مجله علوم و فنون کشاورزی و منابع طبیعی. 10. 2: 57-68.
شعبان­پور شهرستانی،م.، موسوی،س،ف.، افیونی،م.، سعادت.،س. 1379. انتقال برماید در شرایط مزرعه. مجله خاک و آب. 14. 1: 92-97.
شیرشاهی،ف.، بابازاده،ح.، کاوه،ف و امیری،ا .1393. ارزیابی کارآیی مصرف آب و برآورد عملکرد گندم با استفاده از مدل SWAP در بخشی از شبکه­ی آبیاری و زهکشی درودزن، مجله پژوهش آب در کشاورزی. 28­. 2: 273-283.کیانی،ا. 1384. بررسی اثر روش‌های کم­آبیاری بر میزان تولید محصول گندم و نقش آن در مدیریت منابع آب در مناطق بیابانی بیرجند. پایان­نامه کارشناسی ارشد زراعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
کیانی،ع. 1386. استفاده از مدل SWAP در شبیه‌سازی انتقال آب، املاح و عملکرد نسبی گندم. نهمین سمینار سراسری آبیاری و کاهش تبخیر، بهمن­ماه، دانشکده کشاورزی، دانشگاه باهنر کرمان.
عباسی،ف. 1386. فیزیک خاک پیشرفته، انتشارات دانشگاه تهران.
منصوری،ح.، مصطفی­زاده،ب.، موسوی،س.ف.، .فیضی.م. 1386. استفاده از مدل SWAP به منظور بررسی تاثیر مدیریت آبیاری با آب شور بر رطوبت خاک منطقه رودشت اصفهان، نهمین سمینار سراسری آبیاری و کاهش تبخیر. بهمن­ماه، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان.
نحوی­نیا،م.ج.، شهیدی،ع.، پارسی­نژاد،م.، کریمی،ب. 1389. ارزیابی مدل SWAP در تخمین محصول گندم در شرایط کم­آبیاری و شوری در منطقه بیرجند. مجله پژوهش آب ایران. 6. 4: 43-58.
وزیری،ژ. 1374. ارزیابی مدل­های شوری زدایی خاک با آزمون مزرعه­ای. پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
Ben Asher,J., Van Dam,J., Feddes,R.A and  Jhorar,R.K. 2006. Irrigation of grapevines with saline water II: Mathematical simulation of vine growth and yield. Journal Agricultural Water Management. 83. 1: 22-29.
Droogers,P and Torabi,M. 2002. Field scale scenarios for water and salinity management by simulation modeling. IAERI-IWMI Research Reports 12.
Droogers,P. 2000. Estimating actual evapotranspiration using a detailed agro hydrological model. Journal of hydrology. 229. 1:50-58.
Feddess,R.A., Van Dam,J.C and Hamdy,A. 1997. Modeling of water flow and salinity transport for irrigation management and drainage design. Voume 1. Keynote papers, Water management, salinity and pollution control towards sustainable irrigation in the meditranian Regions. CIHEAM International Conference. September, Valenzo, Bari, Italy.
Jiang,J., Feng,S., Huo,Z., Zhao,Z and Jia,B. 2011. Application of SWAP model to simulate water–salt transport under deficit irrigation with saline water. Mathematical and Computer Modelling. 45. 3: 902–911.
Huston,J.L and Wagenet,R.J. 1992. LEACHM (Learning Estimation and Chemistry Model): A process – based model of water and solute movment, transformation, plant uptake and chmical reactions in the unsaturated zone, Vers. 3.0 Department of Soil. Crop and Atmospheric Scinces. Cornel Univ., Ithaca, N.Y.
Huygen,J., Van Dam,J.C and Krose,J.G. 2000. Introduction to SwapGui, the Swap2.0 Graphical User Interface. Unpublished manual. Wageningen, etherlands. DLO-Staring Centre and Wageningen Agricultural University.
Kaledhonkar,M.J and Keshari,A.K. 2006. Regional salinity modeling for conjunctive water use planning in kheri command. Journal Irrigation and Drainage Engineering.132.4: 376-389.
Kroes,J.G and Van Dam,J. C. 2008. Reference manual SWAP version 3.2., Alterra Green World Research. Wagenningen.
Kumar,P., Sarangi,A., Singh,D.K., Parihar,S.S and Sahoo,R.N. 2015. Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Journal Agricultural Water Management. 148: 72–83.
Shani,U and Dudley,L.M. 2001. Field studies of crop response to water and salt stress. Soil Science Society of America Journal. 65: 1522-1528.
Singh,R. 2004. Simulation on direct and cyclic use of saline waters for sustaining Cotton-Wheat in a semi-arid area of north-west India. Journal Agricultural Water Management. 66.2: 153-162.
Smets.,S.M.P., Kuper,M., Van Dam,J.C and Feddes.,R.A. 1997. Salinazation and crop transpiration of irrigated fileds in Pakistans Punjab. Journal Agricultural Water Management. 35. 2: 43-60.
Szabolcs,H. 1989. Salt Affected Soils. CRC Press Inc., Boca Raton, Florida.
Van Genuchten,M.Th. 1980. A closed from eqution for preceding the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44. 5: 829-898.
Van Dam,J.C, Huygen,J., Wesseling,J.G., Feddes,R.A., Kabat,P., V.Van Walsum,P.E., Groenendijk,P and Van Diepen.,C.A. 1997. Theory of SWAP version 2.0. The Netherlands: Wageningen Agricultural University.
Verma,A.K., Gupta,S.K. and Isaac,R.K. 2012. Use of saline water for irrigation in monsoon climate and deep water table regions: simulation modeling with SWAP. Journal Agricultural Water Management. 115: 186–193.