Qualitative assessment of Birjand plain aquifer for pressurized irrigation by using Geostatistic Indicator Kriging Method

Document Type : Original Article

Authors

1 PhD Student/ Dept. of water Eng./ Faculty of Agriculture/ University of Birjand/Birjand/Iran

2 Water engineering Dept. Faculty of Agriculture University of Birjand Birjand Iran

3 university of birjand, Avini street, birjand city, soth khorasan province,iran

Abstract

Due to the importance of groundwater resources in arid and semi arid regions, the qualitative assessment of these resources is so important. Pressurized irrigation as a suitable method for increasing irrigation efficiency and reducing water consumption, requires water quality analysis. Despite many activities of researchers in the preparation of groundwater quality maps by using geostatistical methods, most of these studies have focused on the use of conventional kriging techniques that are not suitable for the preparation of vulnerable zones of contamination, In this study spatial variations of aquifer quality parameters and especially suitable areas for pressurized irrigation were investigated by using indicator Kriging method. For this purpose groundwater quality data from 27 wells in Birjand aquifer were studied during 2016. Qualitative parameters were evaluated including pH (acidity), EC (electrical conductivity), SAR (sodium absorption ratio), Na, NaCl, Cl and ClCO and HCO3, respectively. The allowed thresholds for use of these parameters were considered in pressurized irrigation with the proposed FAO limitaion. On the other hand, due to the importance of Langelier Saturation Index in sedimentation of drip irrigation system, this index was also evaluated for aquifer wells and unsuitable areas for pressurized irrigation in the aquifer were determined using the geostatistical indicator kriging method and ArcGIS software.The results indicate suitable irrigation region are located in the eastern and central parts of the plain.

Keywords


امیری بورخانی،م.، خالدیان،م.، اشرف­زاده،ا،. شاه­نظری،ا. 1395. بررسی تغییرات زمانی و مکانی شوری آب‏­های زیرزمینی استان یزد با استفادkه از روش زمین‏ آماری کریجینگ شاخص. اکوهیدرولوژی. 345-335:3.3
اکبرزاده،م.، قهرمان،ب.، داوری،ک. 1395. ارزیابی کیفیت منابع آب زیرزمینی شهر مشهد با استفاده از کریجینگ نشانگر برمبنای آلودگی نیترات. آبیاری و زهکشی ایران. 62-48:1.10
بامری،ا.، پیری،ح.، گنجی،ف. 1394. ارزیابی آلودگی آب‌های زیرزمینی دشت بجستان جهت مصارف کشاورزی با استفاده از روش کریجینگ شاخص. مجله پژوهش‌های حفاظت آب و خاک. .229-211:1.22
زاهدی­فر،م.، موسوی،ا.، رجبی،م. 1392. پهنه­بندی ویژگی­های شیمیایی کیفیت آب­های زیرزمینی دشت فسا با استفاده از روش‌های زمین آماری.‎ مجله آب و خاک. 27. 4: 812-822.
محمدزاده،م. 1391. آمار فضایی و کاربردهای آن. انتشارات دانشگاه تربیت مدرس، چاپ اول،تهران.
Al Kuisi,M., Al-Qinna,M., Margane,A and Aljazzar,T., 2009. Spatial assessment of salinity and nitrate pollution in Amman Zarqa Basin: a case study. Environmental Earth Sciences. 59.1:117-129.
Arslan,H. 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra plain, Turkey. Agricultural water management. 113.3:57-63.
Bierkens,M.F.P and Burrough,P.A. 1993. The indicator approach to categorical soil data. European journal of soil science. 44.2:361-368.
Chica-Olmo,M., Luque-Espinar,J.A., Rodriguez-Galiano,V., Pardo-Igúzquiza,E and Chica-Rivas,L. 2014. Categorical indicator kriging for assessing the risk of groundwater nitrate pollution: the case of vega de Granada aquifer (SE Spain). Science of the Total Environment, 470, pp.229-239.
Dash,J.P., Sarangi,A and Singh,D.K. 2010. Spatial variability of groundwater depth and quality parameters in the national capital territory of Delhi. Environmental management. 45.3:640-650.
Delbari,M., Amiri,M and Motlagh,M.B. 2016. Assessing groundwater quality for irrigation using indicator kriging method. Applied water science. 6.4:371-381.
De Wiest,R.J.M. Geohydrology. first edition. John Wiley and Sons Inc, New York. 1965. 366p.
Ella,V.B., Melvin,S.W and Kanwar,R.S., 2001. spati al analysis of NO3–N concentration in glacial till. transactions of the. 44.2. 317.
Goovaerts,P., AvRuskin,G., Meliker,J., Slotnick,M., Jacquez,G and Nriagu,J., 2005. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. water resources research. 41.7:1-19
Halvorson,J.J., Bolton,H., Rossi,R.E and Smith,J.L., 1995. Evaluating shrub-associated spatial patterns of soil properties in a shrub-steppe ecosystem using multiple-variable geostatistics. Soil science society of america journal. 59.5:1476-1487.
Haining,R., 1993. Spatial data analysis in the social and environmental sciences. Cambridge university press.
Hu,K., Huang,Y., Li,H., Li,B., Chen,D and White,R.E. 2005. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in north china plain. environment international. 31.6:896-903.
Jang,C.S and Chen,S.K. 2015. Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of hydrology. 523:441-451.
Liu,C.W., Jang,C.S and Liao,C.M. 2004. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the total environment. 321.1-3:173-188.
Rahman,A., 2008. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied geography. 28.1:32-53.
Sarangi, A., Cox, C. A and Madramootoo, C. A., 2005. Geostatistical methods for prediction of spatial variability of rainfall in a mountainous region. Transactions of the ASAE. 48.3:943-954.
Sarangi,A., Madramootoo,C.A and Enright,P., 2006. Comparison of spatial variability techniques for runoff estimation from a Canadian watershed. Biosystems engineering. 95.2:295-308.
Smith,J.L., Halvorson,J.J and Papendick,R.I. 1993. Using multiple-variable indicator kriging for evaluating soil quality. Soil Science society of america journal. 57.3:743-749.