Evaluation of AquaCrop, WOFOST, and CropSyst to Simulate Rapeseed Yield

Document Type : Original Article

Authors

1 swri

2 Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

3 Department of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj. Iran.

4 PhD student of irrigation and drainage, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

In order to evaluate the performance of three cropping models: AquaCrop, WOFOST, and CropSyst, for simulating rapeseed yield, experimental data collected from Qazvin research station during two years (2010-2012) were used. Treatments were consisted of 12 deficit irrigation scenarios (T1 to T12) and full irrigation (FI) during crop season. Results showed that all three copping models were moderately sensitive with the respect to change the input parameters. AquaCrop was only highly sensitive to alteration of the transpiration coefficient values. The average differences between measured and simulated grain yield using AquaqCrop, WOFOST, and Cropsyst were 10.2%, 12.1%, and 12.6%, respectively. The RMSE values for grain yield simulation using AquaCrop, WOFOST, and CropSyst were 0.216, 0.286, and 0.332 ton.ha-1, respectively. RMSE values for biomass using abovementioned models were 0.223, 0.418, and 0.446 ton.ha-1, respectively. NRMSE values for abovementioned models were 0.04, 0.09, and 0.09, respectively. Values for EF were also revealed that AquaCrop had a better efficiency compared to other models. Regarding the results, it seems that AquaCrop is an appropriate cropping model to simulate rapeseed yield and biomass.

Keywords


حسن‌لی، م.، افراسیاب، پ.، ابراهیمیان، ح. 1394. ارزیابی مدل‌های AquaCrop و SALTMED در تخمین عملکرد محصول ذرت و شوری خاک. تحقیقات آب و خاک ایران. 46(3): 498-487.
حیدری‌نیا م.، ناصری ع.، برومندنسب، س. 1391. بررسی امکان کاربرد AquaCrop در برنامه‌ریزی آبیاری آفتابگردان در اهواز. مهندسی منابع آب. 5(1): 41-39.
رحیمی‌خوب، ح.، ستوده‌نیا، ع.، مساح‌بوانی، ع. 1393. واسنجی و ارزیابی مدل AquaCrop برای ذرت علوفه‌ای منطقه قزوین. آبیاری و زهکشی. 8(1): 115-108.
علیزاده، ح. ع.، نظری، ب.، پارسی‌نژاد، م.، رمضانی اعتدالی، ه. جانباز، ح. ر. 1389، ارزیابی مدل AquaCrop در مدیریت کم‌آبیاری گندم در کرج. نشریه آبیاری و زهکشی ایران. 24(2): 283-273.
مجرد ف.، فرهادی ب.، خیری، ر. 1393. نقش عوامل آب و هوایی در تعیین تاریخ آغاز کشت و طول دوره رشد کلزا با کاربرد مدل CropSysyt (مورد مطالعه: استان‌های ساحل دریای خزر). پژوهش‌های جغرافیایی طبیعی. 46(4): 476-463.
محمدی، م.، داوری، ک.، قهرمان، ب.، انصاری، ح.، حق‌وردی، ا. 1394. واسنجی و صحت‌سنجی مدل AquaCrop برای شبیه‌سازی عملکرد گندم بهاره تحت تنش همزمان شوری و خشکی. پژوهش آب در کشاورزی. 29(3): 295-277.
نخجوانی‌ مقدم، م. م.، قهرمان، ب.، داوری، ک.، علیزاده، ا.، دهقانی سانیج، ح.، توکلی، ع. 1395. شبیه‌سازی عملکرد گندم در شرایط دیم کامل و آبیاری تکمیلی و ارائه سناریوهای برتر مدیریتی در بالادست حوضه آبریز کرخه. آبیاری و زهکشی. 10(4): 478-466.
هنر ت.، ثابت سروستانی ع.، کامگار حقیقی ع. ا.، شمس، ش. 1390. واسنجی مدل گیاهی CropSysyt جهت عملکرد و شبیه‌سازی رشد گیاه کلزا. آب و خاک. 25(3): 605-593.
 
Ahmadi S. H., Mosallaeepour E., Kamgar-Haghighi A.K., Sepaskhah, A. R. 2015. Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resource Management. 29: 2837-2853.
Araya A., Solomon H., Kiros M.H., Afewerk K., Taddese, D. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Manage. 97: 1838-1846.
Arvaneh H., Abbasi F., Eslami, H. 2011. Validation and testing of AquaCrop under farmers management, 1st National Conference on Agrometeorology and Agricultural Water Management.
Bellocchi G., Silvestri N., Mazzoncini M., Menini, S. 2002. Using the CropSyst Model in Continuous Rainfed maize (Zea mais L) under Alternative Manangment Option. Italian Journal of Agronomy. 6:43-56.
Boogaard H.L., Van Diepen C.A., Rotter R.P., Cabrera J.M.C.A., Van Laar, H. H. 1998. WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Bouman, B. A. M., Van Keulen, H., Van Laar, H. H. Rabbinge, R. 1996. The “School of de Wit”, crop growth simulation models: pedigree and historical overview. Agricultural System. 52: 171-198.
Confalonieri R., Bocchi, S. 2005. Evaluation of CropSyst for Simulation the Yield of Flooded Rice in Northern Italy. Europian Journal of Agronomy. 23:315-326.
Confalonieri, R., Acutis, M., Bellocchic, G. Donatelli, M. 2009. Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecological Modeling. 220: 1395-1410.
Eitzinger, J., Trnka, M., Hosch, J., Zalud, Z. Dubrovsk, M.  2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modeling. 171: 223-246.
Geerts, S., Raes, D. 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 96: 1275-1284.
Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M. E., Scaglia, B., Confalonieri, R. 2016. WOFOST-GTC: a new model for the simulation of winter rapeseed production and oil quality. Field Crops Research. 197: 125-132.
Heng, L.k., Hsiao, T.C., Evett, S., Howell, T., Steduto, P. 2009. Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy Journal. 101(3):488-498.
Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., Fereres, E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal.101(3): 448-459.
Katerji, N., Campi, P., Mastrorilli, M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management. 130: 14-26.
Marletto, V., Ventura, F., Fontana, G. Tomei, F. 2007. Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. Agricultural Meteorology. 147: 71–79.
Masanganise J., Basira, K., Chipindu, B., Mashonjowa, E., Mhizha, T. 2013. Testing the utility of a crop growth simulation model in predicting maize yield in a changing climate in Zimbabwe. International Journal of Agricultural and Food Science. 3(4): 157-163.
Moriondo M., Maselli F., Bindi, M. 2007. A Simple Model of Regional Wheat Yield Based on NDVI data. Europian Journal of Agronomy. 26: 266-274.
Mousavizadeh, S. F., Honar, T., Ahmadi, S. H. 2016. Assessment of the AquaCrop model for simulating canola under different irrigation management in a semiarid area. International Journal of Plant Production. 10(4): 1735-6814.
Raes, D., Steduto, P., Hsiao, T.C., Fereres, E. 2009. AquaCrop— the FAO crop model to simulate yield response to water II. Main algorithms and software description. Agronomy Journal. 101:438–447.
Reddy, T. Y., Reddi, G. H. S. 2003. Principles of Agronomy. Kalyani Publishers, Ludhiana. pp.48–77.
Salemi, H., Mohd Soom, M.A., Lee, T.S., Mousavi, S.F., Ganji, A., KamilYusoff,  M. 2011. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research. 610: 2204-2215.
Song, Y. I., Chen, D. L. Dong, W. J. 2006. Influence of climate on winter wheat productivity in different climate regions of China, 1961–2000. Climatology Research. 32: 219–227.
Stockle, C. O. Nelson, R. L. 1996. Cropsyst User’s manual (Version 2.0). Biological Systems Engineering Dept., Washington State University, Pullman, WA, USA.
Stricevic, R., Cosic, M., Djurovic, N., Pejic, B., Maksimovic, L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize sugar beet and sunflower. Agricultural Water Management. 98: 1615-1621.
Tesfamriam, E.H., J.G. Annandale, Steyn, J. M. 2010. Water stress effects on winter canola growth and yield. Agronomy Journal. 102:658–666.
Todorovic, M., Albrizio, R., Zivotic, L., Abi Saab, M. T., Steduto, P. 2009. Assessment of AquaCrop, Cropsyst, and WOFOST Models in the simulation of sunflower growth under different water regimes. Agronomy Journal. 101(3): 509-521.
Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., van Walsum, P.E.V., Groenendijk, P. van Diepen, C. A. 1997. Theory of SWAP Version 2.0, Report #71. Department of Water Resources, Wageningen Agricultural University, 167 pp.
Yang, H. S., Dobermann, A., Lindquist, J. L., Wolters, D. T., Arkebauer, T. J. Cassman, K. G. 2004. Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crops Research. 87: 131–154.
Zeleke, K., Luckett, D., Cowley, R. 2011. Calibration and Testing of the FAO AquaCrop Model for Canola. Agronomy Journal. 103: 1610-1618.
Zomorodian A., Kavoosi Z., Momenzadeh, L. 2010. Determination of EMC isotherms and appropriate Mathematical models for canola. Food and Bioproducts Processing. 89(4): 407-413.