Laboratory modeling of drainage problem in fine alluvial aquifers with surface recharge

Document Type : Original Article

Authors

1 Yasouj University

2 yasooj university

3 Soil Science Dept., College of Agriculture, Yasouj University

Abstract

With recharge to ground water problems and also lack of ground water resources, in this paper see page discharge and subsurface were modeled for fine-grain soil with surface recharge by a laboratory model. It was compared the results of experimental with the results of Bear (1972) and Castro- Orgaz et al (2012) analytical solutions. Laboratory model having fine porous media has 5 m long, 0.6 m wide and 1 m deep. For different water levels and bed slope of 0.0135, the seepage flow and subsurface water profile were measured under surface recharge condition and then were compared with the above- mentioned analytical solutions. Comparison seepage flow were compared with experimental seepage flows and the value of relative error were determined. Also the different between experimental and analytical results were determined means of NOF. After the comparison between experimental and analytical results, the weakness and strength of each method has been revealed. After comparison and evaluation the results of the discharge experimental with the analytical relationship Bear (1972) the relative error was between 4.2 to 6.4 percent.
and then were compared with analytical relationship. The values of relative error percent and NOF function for compared and measured variables were computed.
After comparison of experimental results and analytical solutions, the weakness and strength of each method has been revealed. After comparing the results of the discharge experimental with the analytical relationship based on Dupuit- Forchheimer assumption the relative error was between 4.2 to 6.4 percent. By the comparison of the experimental results with analytical solution for Subsurface flow profile, the NOF were analytical between 0.012 to 0.048 for Chapman, 0.011 to 0.081 for Bear and 0.011 to 0.078 for Castro- Orgaz et al, respectively, which indicated a proper confirmation.

Keywords


 انصاری، الف. 1391. مطالعه عددی و تحلیلی خط فریاتیک درون زهکش‌های سنگریز. پایان‌نامه کارشناسی ارشد دانشگاه آزاد اسلامی واحد یاسوج.
صدقی‌اصل، م.، رحیمی، ح.، فرهودی، ج.، سامانی،ج. 1389. پژوهشی بر پروفیل‌های جریان متلاطم در محیط‌های سنگریز. نهمین کنفرانس هیدرولیک ایران، دانشگاه تربیت مدرس تهران.
صدقی‌اصل،م.، رحیمی،ح.، فرهودی،ج.، سامانی،ج. 1389. تجزیه و تحلیل پروفیل‌های جریان درون محیط‌های متخلخل درشت‌‌دانه. مجله پژوهش آب ایران. 4(7): 81-88.
صلاحی‌نیا،س. 1393. مطالعه آزمایشگاهی جریان زیر‌سطحی در شرایط تغذیه‌سطحی و تغییرات خاک. پایان‌نامه کارشناسی ارشد، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه یاسوج.
فرداد.ح. اصول زهکشی و کاربرد آن. چاپ دوم، انتشارات دانش و فن، 1384.
محمودیان‌شوشتری،م. 1388. هیدرولیک آب‌های زیرزمینی. چاپ اول، اهواز، انتشارات دانشگاه شهید چمران.
وزارت نیرو. شرکت مدیریت منابع آب ایران، معاونت پژوهشی و مطالعات پایه، دفتر استانداردها و معیارهای فنی، 1384، راهنماهای استاندارد در تغذیه مصنوعی آب‌های زیرزمینی، نشریه شماره 150-ن.
Bear, J. 1972. Dynamics of Fluids in Porous Media. Elsevier Science. New York.
Brutsaert, W. 1994. The unit response of groundwater outflow from a hill slope. Water Resources Research. 30: 2759-2763.
Castro-Orgaz, O. 2011. Steady free- surface flow in porous media. generalized Dupuit-Fawer equations. Journal of Hydraulic Research 49(1): 55-63.
Castro-Orgaz, O., Giraldez, J.V., Robinson, N.I. 2012. Second-order two-dimensional solution for the drainage of recharge based on Picard’s iteration technique. A generalized Dupuit-Forchheimer equation. Journal of Hydraulic Research. 48. W06516.
Castro-Orgaz, O., Giraldez, J.V., Mateos., L. 2013. Where is the water table? A reassessment of the Dupuit-Forchheimer theory using higher order closure hypothesis. Estudios en la Zona no Saturada del Suelo. Vol XI.
Chapman, T.G. 1980. Modeling groundwater flow over sloping beds. Water Resources Research. 16: 1114-1118.
Chapuis, R.P. 2010. Steady state groundwater seepage in sloping unconfined aquifers. Bulletin of Engineering Geology and the Environment. 70 89-99.
Childs, E.C. 1971. Drainage of groundwater resting on a sloping bed. Water Resources Research. 7: 1256-1263.
Choi, E.C.C. 1983. Seepage around horizontal drains in hill slopes. Journal of Hydraulic Engineering. 109: 1363-1368.
Di nucci, C. 2015. A free boundary problem for fluid flow through porous media. arXiv:1507.05547v1 [physics.flu-dyn].
Sedghi-Asl, M., Ansari, I. 2016. Adoption of Extended Dupuit- Forchheimer Assumptions to Non-Darcy Flow Problems. Transport in Porous Media. 113(3): 457-468.
Sedghi-Asl, M., Rahimi, H., Farhoudi, J., Hoorfar, A., Hartmann, S. 2014a. One-Dimensional Fully Developed Turbulent Flow through Coarse Porous Medium. Journal of Hydrologic Engineering. (ASCE). 19(7): 1491-1497.
Sedghi-Asl, M., Rahimi, H., Farhoudi, J., Hartmann, S. 2014b. An Analytical Solution for 1-D Non-Darcy Flow Through Slanting Coarse Deposits. Transp Porous Med. 104: 565-579.
Yates, S.R.A.W., Warrick, D.O., Lomen. 1985. Hillside Seepage. An analytical solution to a nonlinear Dupuit Forchheimer problem. Water Resources Research. 21: 331-336.