کاربرد شاخص‌های سنجش از دور در تخمین پوشش تاجی، زیست‌توده و تاریخ کشت گندم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشگاه شهید چمران اهواز

2 مدیر گروه آبیاری زهکشی دانشگاه شهید چمران اهواز

3 استاد، دانشگاه شهید چمران اهواز

4 استادیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس

5 استادیار، دانشگاه ایالتی اوکلاهما

چکیده

گندم، منبع اصلی تولید غذا در ایران بوده و استان‌های خوزستان و فارس، دو قطب اصلی تولید این محصول در این کشور است. تعیین اجزای عملکرد گندم، اهمیت ویژه‌ای در برنامه‌ریزی کشت و تولید این محصول دارد. در این مطالعه، محصول گندم، در مراحل مختلف رشد در قالب پوشش تاجی و همچنین زیست‌توده گیاه گندم با کاربرد تصاویر ماهواره‌ای برآورد گردید. شاخص‌های NDVI و LWCI از تصاویر ماهواره لندست 8، در دو سال زراعی 96-95 و 97-96 در چهار مزرعه در داراب و زرقان در فارس و دزفول و امیدیه در خوزستان برای تعیین پوشش تاجی و زیست‌توده، بکار رفت. پوشش تاجی در مزارع، با تصویربرداری و کاربرد نرم‌افزار ENVI تعیین و زیست‌توده در طول فصل رشد نیز با نمونه‌برداری در مزارع، اندازه‌گیری شد تا با مقادیر برآوردشده حاصل از روش سنجش از دور مقایسه شود. در برآورد پوشش تاجی، رابطه خطی بین مقادیر پوشش تاجی و NDVI با ضریب تعیین 88/0 حاصل‌شد. ضرایب تعیین این رابطه در مزارع دزفول، امیدیه، داراب و زرقان به ترتیب 96/0، 93/0، 95/0 و 89/0 بود. زیست‌توده گیاهی، با استفاده از مقادیر سنجش از دور در طول فصل رشد و کاربرد متوسط زیست توده در منطقه، تعیین گردید. مقادیر راندمان مدل بر اساس شاخص EF در برآورد زیست‌توده در دزفول، امیدیه، داراب و زرقان به ترتیب 81، 71، 82 و 80 درصد بود. با رسم مقادیر NDVI بر حسب زمان در طول دوره رشد نیز، روشی برای برآورد تاریخ مناسب کشت گندم در مزارع ارائه گردید. این مطالعه، روشی کم‌هزینه و با صرف زمان کم، جهت گذر از اندازه‌گیری‌های سخت و زمان‌بر مزرعه‌ای را ارائه داد که در برآورد پوشش تاجی، زیست‌توده و تاریخ کشت گندم در مناطق مورد مطالعه قابل کاربرد است.

کلیدواژه‌ها


عنوان مقاله [English]

Use of remote sensing indices in estimation of canopy cover, biomass and planting date of wheat

نویسندگان [English]

  • Mohammad Hadi Jorenush 1
  • Saeed Boroomand Nasab 2
  • Abd Ali Naseri 3
  • Mojtaba Pakparvar 4
  • Saleh Taghvaeian 5
1 Ph.D candidate, Shahid Chamran University of Ahvaz
2 Head of irrigation and drainage department, Shahid Chamran University of Ahvaz
3 Shahid chamran university of Ahvaz
4 Assistant professor, Fars agricultural and natural resources research and education center
5 Assistant professor, Oklahoma state University
چکیده [English]

Wheat is the main source of food production in Iran. Khuzestan and Fars provinces are the two main poles of production in Iran. Determination of wheat yield components is of particular importance in the planning of planting and production of this crop. In this study, wheat yield in different growth stages was estimated using canopy cover as well as wheat biomass using satellite imagery. NDVI and LWCI indices from Landsat 8 satellite images were used to determine canopy cover and biomass at four fields in Darab and Zarangan in Fars and Dezful and Omidiyeh in Khuzestan during two crop years. Canopy cover was determined by field imaging and application of ENVI software; and biomass was measured during growing season by field sampling to compare with estimated values obtained by remote sensing. A linear relationship was found between canopy cover and NDVI with a R2=0.88. The coefficients of determination of this relationship in Dezful, Omidieh, Darab and Zarghan were 0.96, 0.93, 0.95 and 0.89, respectively. Biomass was determined using remote sensing indices and average biomass of each region, during the growing season. Model efficiency values based on EF index for biomass estimation in Dezful, Omidiyeh, Darab and Zarqan were 81, 71, 82 and 80 percent, respectively. Plotting NDVI values over time during the growing season also provided a method for estimating the appropriate wheat planting date. This study presented a low-cost and less-time consuming method for passing difficult field measurements that can be used to estimate canopy cover, biomass, and wheat planting date in the study areas.

کلیدواژه‌ها [English]

  • Biomass
  • Canopy cover
  • NDVI
  • Wheat
 احمدی، ک.، عبادزاده، ح.، عبدشاه، ه.، کاظمیان، آ. و رفیعی، م. 1397. آمارنامه کشاورزی (سال زراعی 96-1395). وزارت جهادکشاورزی. مرکز فناوری اطلاعات و ارتباطات.
ثنایی‌نژاد، ح.، نصیری محلاتی، م.، زارع، ح.، صالح‌نیا، ن. و قائمی، م. 1392. تخمین عملکرد گندم آبی به وسیله تصاویر ماهواره لندست در برخی از مزارع شهرستان مشهد. نشریه پژوهش‌های تولید گیاهی. 20. 4: 63-45.
رضایی، م.، رائینی سرجاز، م.، شاهنظری، ع. و وظیفه‌دوست، م. 1393. برآورد عملکرد برنج در بخشی از شبکه سفیدرود گیلان با استفاده از تصاویر ماهواره لندست (مطالعه موردی: صومعه سرا). نشریه آبیاری و زهکشی ایران. 3. 8: 601-591.
علی‌آبادی، ک. و انتظاری، ع. 1393. تخمین پارامتر فیزیک (زی توده) پوشش گیاهی با استفاده از داده های سنجش از دوری. مطالعات جغرافیایی مناطق خشک. 15. 4: 33-23.
لقمانی، ک.، کاویانی، ع.، نظری، ب. و لیاقت، ع. 1397. تخمین عملکرد محصول گندم با استفاده از تصاویر ماهواره لندست 8 (مطالعه موردی: دشت مغان). تحقیقات آب و خاک ایران. 5. 1042-1031.
یاقوتی، ح.، پذیرا، ا.، امیری، ا. و مسیح‌آبادی، م. ح. 1397. کاربرد تصاویر ماهوارهای و فنآوری سنجش از دور برای تخمین عملکرد برنج. نشریه حفاظت منابع آب و خاک. 7. 3: 55-68.
Bao, Y., Gao, W and Gao, Zh. 2009. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolution. Front Earth Scientist, 3. 1: 118-128.
Calera, A., Martinez, C and Melia, J. 2001. A procedure for obtaining green plant cover: relation to NDVI in a case study for barley. International Journal of Remote Sensing. 22. 17: 5557-5562.
Cheng, Q and Wu, X. 2011. Mapping paddy rice yield in Zhejiang province using MODIS spectral index. Turkish Journal of Agriculture and Forestry. 35. 579-589.
Chianucci, F., Lucibelli, A and DellAbate, M. T. 2018. Estimation of ground CC in agricultural crops using downward-looking photography. Science Direct. 169: 209-216.
Gutman, G and Ignatov, A. 1997. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing. 19, 1533-1543.
Huete, A.R., Didan, K., Miura, T., Rodriguez, E.P., Gao, X and Ferreira, G. 2002. Overview of the radiometric and biophysical performance ofthe MODIS Vegetation Indices. Remote Sensing of Environment. 83: 195213.
Johnson, L. F and Trout, T. J. 2012. Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin valley. Remote Sensing. 4: 439-455.
Kim, D and Kaluarachchi, J. 2015. Validating FAO AquaCrop using Landsat images and regional crop information. Agricultural Water Management. 149: 143-155.
Larson, H. 2007. Linear regressions for CC estimation in Acacia woodlands using Landsat-TM, -MSS and SPOT HRV XS data. International Journal of Remote Sensing. 14. 2129-2136.
Matinfar, H.R. 2013. Modeling wheat yield estimation base upon spectral data and field measurement, case study: Razan plain, Iran. Technical Journal of Engineering and Applied Sciences. 3. 17: 2123-2130.
Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecosystem. 3. 747-766.
Nash, J.E. and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Journal of Hydrology. 10: 282–290.
Nuarsa, W., Nishio, F and Hongo, C. 2012. Rice yield estimation using Landsat ETM+ data and field observation. Journal of Agronomy Science. 4. 3: 45-56.
Patrignani, A. and Ochsner, T. E. 2015. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy Journal. 107: 2312-2320.
Raun, W.R., Solie, J.B., Stone, M.L., Lukina, E.V., Thomason, W.E and Schepers, J.S. 2001. In season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal. 93: 131-138.
Raymond, E and Hunt, JR. 1987. Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment. 22: 429-435.
Sarker, L. R and Nichol, J. E. 2011. Improved Forest estimates using ALOSAVNIR-2 Texture indices, Remote Sensing of Environment.,115: 968-977.
Siyal, A.A., Dempewolf, J and Becker-Reshef, I.  2015. Rice yield estimation using Landsat ETM+ Data. Journal of Applied Remote Sensing. 9: 1-16.
Trout, T. J. 2008. Remote sensing of canopy cover in horticultural crops. Horticultural Science.43. 2:333-337. 
Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society. 1309-1313.
Zhang, H., Chen, H and Zhou, G. 2012. The model of wheat yield forecast based MODIS-NDVI-A case study of Xinxiang. International Society for Photogrammetry and Remote Sensing Conference, Melbourne, Australia, 25 August–01 September 2012: 25-28.